Topic Review
Logic Gates and Molecular Logic Gates
Logic gates are devices used to perform binary arithmetic and logical operations and thus constitute the basis of modern computers. They perform Boolean logic operations on one or more inputs to produce an output. Molecular switches convert input stimulations into output signals. Therefore, the principles of binary logic can be applied to the signal transduction operated by molecular switches. The presence of various ions, neutral species, pH, temperature, and viscosity, among many others, result in color or emission changes due to the complex interplay of many excited state processes and environmental parameters. In this entry, basic logic gates are defined, and their types are given, while examples of molecular logic gates are also presented.
  • 10
  • 29 Mar 2024
Topic Review
Polysaccharide- and Aliphatic Polyester-Based Packaging
Food packaging plays an imperative role in the food processing sector by safeguarding foods from their point of harvesting until the moment of consumption.
  • 20
  • 28 Mar 2024
Topic Review
Alternative Methods to Retting of Straw
Bast fibers, such as flax and hemp, have been used by humanity for thousands of years. In the case of processes other than dew or field retting, they can also follow field drying. In any case, the fiber plant straw is retted first in order to be able to carry out the subsequent mechanical fiber recovery by decortication, cleaning and, if necessary, opening of the coarse fiber bundles. This can be defined as primary processing of bast fiber straw. The retting process involves the controlled decomposition of those substances that bind the fiber containing tissues to the other components of the stalk as well as the fibers to each other (to form so called bundles). It is described as one of the most important steps in the whole supply chain of fibers from bast fiber plants such as hemp and flax since it affects both the ease of performing the subsequent mechanical processing steps as well as the quality of the resulting fibers.
  • 19
  • 27 Mar 2024
Topic Review
In Vivo/In Vitro Electrochemical Detection of Neurochemicals
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods.
  • 19
  • 27 Mar 2024
Topic Review
Epidermal Growth Factor Receptor
Protein kinases are one of the largest enzyme families. By manipulating the location, activity, and functionality of many proteins via multisite phosphorylation, they regulate a broad spectrum of cellular processes. Numerous critical cancer processes, such as tumor growth, metastasis, neovascularization, and chemotherapy resistance, have been shown to be significantly impacted by them. Protein kinases catalyze the transfer of a phosphate group from ATP to the hydroxy group of an amino acid residue. In cellular and molecular process, protein kinases are indispensable. As a result, they play a crucial part in the growth, dissemination, and survival of tumor cells in humans. Hence, this class of enzymes has drawn significant attention as a potential therapeutic target, with multiple kinase suppressors now receiving FDA approval for different cancer indications.
  • 144
  • 25 Mar 2024
Topic Review
Conductive Polymer-Based Interlayer Modified Separators in Lithium–Sulfur Batteries
Lithium–sulfur batteries (LSBs) are considered a promising candidate for next-generation energy storage devices due to the advantages of high theoretical specific capacity, abundant resources and being environmentally friendly. However, the severe shuttle effect of polysulfides causes the low utilization of active substances and rapid capacity fading, thus seriously limiting their practical application. The introduction of conductive polymer-based interlayers between cathodes and separators is considered to be an effective method to solve this problem because they can largely confine, anchor and convert the soluble polysulfides.
  • 27
  • 22 Mar 2024
Topic Review
Chemical and Biological Properties of Xanthohumol
Xanthohumol (Xn), a prenylated chalcone found in Hop (Humulus lupulus L.), has been shown to have potent anti-aging, diabetes, inflammation, microbial infection, and cancer properties. 
  • 38
  • 22 Mar 2024
Topic Review
Properties of Seashells
Researchers around the world have conducted extensive experiments with waste seashells in the form of seashell aggregates and seashell powder. The physical, mechanical, and durability properties of seashell concrete are largely determined by the properties of the aggregates and powders that make up the shell.
  • 39
  • 21 Mar 2024
Topic Review
Polymer-Based Materials for Space Radiation Shielding
Space exploration requires the use of suitable materials to protect astronauts and spacecraft components (e.g. onboard electronics) from the hazardous effects of radiation, in particular, ionizing radiation, which is ubiquitous in the hostile space environment. In this scenario, polymer-based materials and composites play a crucial role in achieving effective radiation shielding while providing low-weight and tailored mechanical properties to different types of spacecraft elements.
  • 46
  • 21 Mar 2024
Topic Review
Peptide for Bone and Cartilage Regeneration
The healing of osteochondral defects (OCDs) that result from injury, osteochondritis, or osteoarthritis and bear lesions in the cartilage and bone, pain, and loss of joint function in middle- and old-age individuals presents challenges to clinical practitioners because of non-regenerative cartilage and the limitations of current therapies. Bioactive peptide-based osteochondral (OC) tissue regeneration is becoming more popular because it does not have the immunogenicity, misfolding, or denaturation problems associated with original proteins. 
  • 35
  • 19 Mar 2024
  • Page
  • of
  • 465