Topic Review Peer Reviewed
Importance of High-Concentration Electrolytes for Lithium-Based Batteries
Each battery cell consists of three main components: the anode, the cathode, and the separator soaked with liquid electrolyte, the medium in the battery that allows charged ions to move between the two electrodes. Besides a wide electrochemical stability window and good compatibility with both electrodes, the electrolyte should also be safe, thermally stable and environmentally benign, showing a high ionic conductivity of the charge-carrying Li ions and finally a low price. This unique combination of properties is impossible to achieve with a simple salt–solvent mixture and usually requires a combination of different electrolyte components, i.e., several liquid solvents and additives and one or more conducting salt(s). For lithium-based batteries, which are the most common electrochemical energy storage devices today, a solution based on lithium hexafluorophosphate (LiPF6) in a mixture of organic carbonates as the solvent is used. Usually, the conducting salt concentrations used for lithium-based electrolytes are in the range of ≈1 to 1.2 M, but recently, electrolytes with much higher conducting salt concentrations of 5 M and even over 10 M have been investigated as they offer several benefits ranging from increased safety to a broadened electrochemical stability window, thus enabling cheap and safe solvents, even water.
  • 46
  • 06 Feb 2025
Topic Review
Films and Coatings Deposition Methods
The modern methods of films and coatings deposition find many new application in industry and technology. The methods are mainly physical and categorized by the species participating in deposits build-up as: (i) atomistic; (ii) granular; and (iii) bulk. The examples of emerging methods developed by the author and belonging to each category are briefly discussed.
  • 1.5K
  • 31 Jan 2025
Topic Review Peer Reviewed
Challenges and Recommendations on Digital Health Sources in Pediatric Chronic Suppurative Lung Diseases
In the context of digitalizing healthcare systems, digital health sources (DHSs) aim to enhance the efficiency, accessibility, and quality of healthcare services by leveraging technology. Multiple types of DHSs are increasingly established in healthcare, providing direct and wide communication between pediatric patients, parents, and healthcare professionals. Therefore, they are considered promising key tools to improve pediatric disease monitoring and management. At the same time, DHSs have been associated with several issues and risks, such as those related to data sharing, privacy, and the cultural readiness of the users. Yet, discussions in the literature have mostly focused on technical considerations and a user-friendly design. In contrast, the contribution of DHSs to treatment engagement in pediatric populations and data sharing has only partially been discussed. On this basis, we provide an overview of the available digital health technologies and their application in the pediatric population with chronic suppurative lung diseases; we describe the effectiveness in health-related outcomes, discuss possible challenges, and propose some recommendations that may overcome barriers in their everyday use.
  • 125
  • 06 Jan 2025
Topic Review Peer Reviewed
Polyhydroxyalkanoates (PHAs): Mechanistic Insights and Contributions to Sustainable Practices
A polymer is a long-chain molecule formed by linking numerous simpler repeating chemical units, known as monomers, with identical structures. Over the past two centuries, there has been a significant increase in the global production and use of petrochemical-based plastics. This surge has led to widespread ecological imbalances, affecting air quality, terrestrial and marine ecosystems, food chains, and plant life. Consequently, the excessive use of such polymers has created challenges in solid waste management, with methods like bio- or photo-degradation, incineration, landfilling, and recycling proving to be time-consuming and laborious. Therefore, there is a growing urgency for biodegradable polymers due to increasing demand. Biodegradable polymers consist of interconnected monomers with unstable links in the backbone, facilitated by various functional groups. Throughout the degradation process of these polymers, numerous biologically acceptable molecules are produced. This study examines the significance of biopolymers over petroleum-based counterparts, offering a detailed analysis. It is noteworthy that within the spectrum of biodegradable polymers, polyhydroxyalkanoates (PHAs) emerge as exceptionally promising candidates for substituting petroleum-derived polymers, owing to their remarkable physical attributes. Therefore, this study provides a systematic overview of PHAs, including their classification, historical background, methods of production, potential challenges to commercialization, and diverse applications.
  • 103
  • 06 Jan 2025
Topic Review Peer Reviewed
Optimizing Graphene Oxide Content in Cellulose Matrices: A Comprehensive Review on Enhancing the Structural and Functional Performance of Composites
The incorporation of graphene into cellulose matrices has emerged as a promising strategy for enhancing the structural and functional properties of composite materials. This comprehensive review provides a critical analysis of recent advances in optimizing graphene content in cellulose matrices and its impact on composite performance. Various optimization techniques, including response surface methodology, particle swarm optimization, and artificial neural networks, have been employed to identify optimal graphene concentrations and processing conditions. Quantitative analyses demonstrate significant improvements in mechanical properties, with notable increases in tensile strength and Young’s modulus reported for graphene/microfibrillated cellulose composites. Substantial enhancements in thermal stability have been observed in lysozyme-modified graphene nanoplatelet–cellulose composites. Electrical conductivity has been achieved at low graphene loading levels. Additionally, barrier properties, biocompatibility, and functionality for applications such as energy storage and environmental remediation have been substantially improved. This review explores case studies encompassing the optimization of thermal conductivity, viscosity, durability behaviors, pollutant removal, and various other properties. Despite promising results, challenges remain, including uniform dispersion, scalability, cost-effectiveness, and long-term stability. Strategies such as surface functionalization, solvent selection, and protective coatings are discussed. Future research directions, including novel processing techniques like 3D printing and electrospinning, as well as the incorporation of additional functional materials, are outlined. This review synthesizes current knowledge, identifies emerging trends, and provides a roadmap for future research in the rapidly evolving field of graphene–cellulose composites.
  • 432
  • 02 Dec 2024
Topic Review
The Psychology Behind Online Casinos
Psychology is the main reason for the growth of online casinos, and much of this has to do with player engagement. Online casinos masterfully bind and keep the player's attention by tapping into well-known behavioral principles. As long as the thrill of uncertainty is kept alive, traditional gambling has always played on psychology.
  • 266
  • 31 Oct 2024
Topic Review
Chemistry in Health Care
The importance of chemistry in nursing is evident in every aspect of patient care. From understanding drug interactions and diagnostic tools to interpreting biochemical data and embracing innovative technologies.
  • 955
  • 31 Oct 2024
Topic Review Peer Reviewed
Synthetic Fuels for Decarbonising UK Rural Transport
Decarbonising transport is a crucial element of the UK’s strategy to achieve net-zero carbon emissions by 2050, as the transport sector is currently the largest contributor to the UK’s greenhouse gas emissions. Rural communities face distinct challenges in this effort due to their reliance on internal combustion engines (ICEs) across vehicles and machinery essential for daily life, including farming equipment and private transport. While the upcoming ban on new petrol and diesel vehicles paves the way for the adoption of Electric Vehicles (EVs), this solution may not fully address the unique needs of rural areas where infrastructure limitations and specific mobility requirements pose significant barriers. In this context, synthetic fuels, produced using renewable energy sources, offer a potential alternative. These fuels can be used directly in existing internal combustion engines without requiring major modifications and have the added benefit of reducing overall greenhouse gas emissions by capturing CO2 during production. This entry explores the potential advantages of adopting synthetic fuels, particularly in rural areas, and examines how community-based buying cooperatives could support their wider use through bulk purchasing, cost reduction, and community empowerment.
  • 691
  • 18 Oct 2024
Topic Review Peer Reviewed
Biorefinery Based on Multiple Raw Materials and Wastes for the Production of Energy: A Proposal Tailored to Southwestern Europe
In this entry, the possibility of the implementation of a biorefinery based on multiple raw materials (from agricultural wastes, vegetable oils, etc.) is covered, pointing out the available technology to interconnect different processes so that the atom economy of the process is as high as possible, reducing the environmental impact and improving the efficiency of the energy or products obtained. For this purpose, this model is based on previous works published in the literature. The role of biorefineries is becoming more and more important in the current environmental scenario, as there is a global concern about different environmental issues such as climate change due to GHG emissions, among others. In this sense, a biorefinery presents several advantages such as the use of natural raw materials or wastes, with high atom economy values (that is, all the products are valorized and not released to the environment). As a consequence, the concept of a biorefinery perfectly fits with the Sustainable Development Goals, contributing to the sustainable growth of different regions or countries, regardless of their stage of development. The aim of this entry is the proposal of a biorefinery based on multiple raw materials, using different technologies such as transesterification to produce both biodiesel and biolubricants, steam reforming to produce hydrogen from glycerol or biogas, hydrothermal carbonization of sewage sludge to produce hydrochar, etc. As a result, these technologies have potential for the possible implementation of this biorefinery at the industrial scale, with high conversion and efficiency for most processes included in this biorefinery. However, there are some challenges like the requirement of the further technological development of certain processes. In conclusion, the proposed biorefinery offers a wide range of possibilities to enhance the production of energy and materials (hydrogen, biodiesel, biolubricants, different biofuels, hydrochar, etc.) through green technologies, being an alternative for petrol-based refineries.
  • 1.1K
  • 30 Sep 2024
Topic Review
Humic Substances
Humic substances are a very important part of our soil.  The topic is description of the structure of humic substances using NMR.  The NMR part is divided into two parts, liquid and solid state NMR.  The assignment of NMR spectra are discussed and the structural elements that can be deduced from the spectral information.  Principal Component Analysis is used as a tool to categorize the information.  Structural models are discussed.
  • 3.7K
  • 16 Jul 2024
  • Page
  • of
  • 466
Video Production Service