Topic Review
Reactive Species-Activatable AIEgens for Biomedical Applications
Precision medicine requires highly sensitive and specific diagnostic strategies with high spatiotemporal resolution. Accurate detection and monitoring of endogenously generated biomarkers at the very early disease stage is of extensive importance for precise diagnosis and treatment. Aggregation-induced emission luminogens (AIEgens) have emerged as a new type of excellent optical agents, which show great promise for numerous biomedical applications. Advances of AIE-based probes for detecting reactive species (including reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive sulfur species (RSS), and reactive carbonyl species (RCS)) and related biomedical applications are introduced. The molecular design strategies for increasing the sensitivity, tuning the response wavelength, and realizing afterglow imaging are summarized, and theranostic applications in reactive species-related major diseases such as cancer, inflammation, and vascular diseases are reviewed.
  • 247
  • 11 Oct 2022
Topic Review
Reactive Oxygen Species Generated by Copper–Peptide Complexes
Reactive oxygen species (ROS) are involved in many biological and medical processes, ranging from neurodegenerative disorders and cancer to bacterial and viral diseases, and sometimes are of major commercial interest. They are important regulators of and secondary messengers in several cell-signaling pathways, including the reactive oxygen species-mediated death of different cells.
  • 713
  • 25 Mar 2022
Topic Review
Reactive Ni–Al-Based Materials
Energetic materials are substances or mixtures in which, under the action of external forces, self-sustaining chemical reactions occur with the release of a large amount of energy. A promising group of energetic materials are reactive structural materials (RSMs), consisting of two or more solids, usually nonexplosive metallic or nonmetallic powders, in which an exothermic reaction can occur after high-velocity impact and penetration into a target. As a rule, thermite, intermetallic, metal-fluoropolymer systems and metastable intermixed composites are used as RSMs.
  • 785
  • 23 Jun 2021
Topic Review
Reactions of Nitrile Anions
Nitrile anions are the conjugate bases of alkyl nitriles. They undergo nucleophilic addition and substitution reactions with various electrophiles.
  • 986
  • 24 Oct 2022
Topic Review
Reactions of Graphene Nano-Flakes
The elucidation of the mechanism of the chemical evolution of the universe is one of the most important themes in astrophysics. Polycyclic aromatic hydrocarbons (PAHs) provide a two-dimensional reaction field in a three-dimensional interstellar space. Additionally, PAHs play an important role as a model of graphene nanoflake (GNF) in materials chemistry.
  • 550
  • 27 May 2022
Topic Review
Reaction of CO2 with Epoxides
Coupling of CO2 with epoxides is a green emerging alternative for the synthesis of cyclic organic carbonates (COC) and aliphatic polycarbonates (APC). The scope of this work is to provide a comprehensive overview of metal complexes having sulfur-containing ligands as homogeneous catalytic systems able to efficiently promote this transformation with a concise discussion of the most significant results. The crucial role of sulfur as the hemilabile ligand and its influence on the catalytic activity are highlighted as well.
  • 1.8K
  • 22 Jan 2021
Topic Review
Reaction Mechanisms of Glycerol Hydrogenolysis to 1,2-Propylene Glycol
The development and growth of the biodiesel industry has led to a parallel market for the supply of glycerol, its main by-product. Its wide availability and relatively low cost as a raw material make glycerol a basic component for obtaining various chemical products and allows for the development of a biorefinery around biodiesel plants, through the technological integration of different production processes. Catalytic hydrogenolysis is an interesting alternative because it leads to the formation of 1,2-propylene glycol (1,2-PG) and other glycols such as 1,3-propylene glycol (1,3-PG) and ethylene glycol (EG), widely used in the chemical industry. In the following text, the main reaction mechanisms of glycerol hydrogenolysis are presented, focusing on the production of 1,2-PG, in order of chronological appearance.
  • 706
  • 10 May 2023
Topic Review
Reaction Mechanism of Olefins
Light olefins (C2-C4) are important C-building blocks which are currently used to produce a variety of chemicals, such as elastomers, medicines, cosmetics, detergents, solvents, etc. They can be produced by steam cracking, fluid catalytic cracking of naphtha, direct/indirect conversion of synthesis gas (CO + H2) or by hydrogenation of CO2 using H2 from renovable energy sources. However, the catalytic production of light olefins from CO2 is difficult due to the chemical inactivity of CO2 molecule, the high C-C coupling barrier and the necesity to limit the formation of C-C bond and methane. Therefore, the catalysts required for this reaction must to be multifunctional and have an optimized amount of active sites. 
  • 1.3K
  • 29 Nov 2021
Topic Review
Reaction Mechanism of CO2 Methanation
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts.
  • 2.5K
  • 07 Mar 2022
Topic Review
RB6 Nanowires
With the rise of topological insulator samarium hexaboride (SmB6), rare-earth hexaboride (RB6) nanowires are the focus of the second wave of a research boom. Recent research has focused on new preparation methods, novel electronic properties, and extensive applications. 
  • 398
  • 21 Dec 2021
  • Page
  • of
  • 467
Video Production Service