Topic Review
Biological Functions of Nitric Oxide
Nitric oxide (nitrogen monoxide) is a molecule and chemical compound with chemical formula of NO. In mammals including humans, nitric oxide is a signaling molecule involved in several physiological and pathological processes. It is a powerful vasodilator with a half-life of a few seconds in the blood. Standard pharmaceuticals such as nitroglycerine and amyl nitrite are precursors to nitric oxide. Low levels of nitric oxide production are typically due to ischemic damage in the liver. As a consequence of its importance in neuroscience, physiology, and immunology, nitric oxide was proclaimed "Molecule of the Year" in 1992. Research into its function led to the 1998 Nobel Prize for elucidating the role of nitric oxide as a cardiovascular signalling molecule.
  • 2.5K
  • 04 Nov 2022
Topic Review
Biological Properties of Anthocyanin Pigments in Blood Oranges
Anthocyanins are natural pigments that give a red, purple, and blue color to many plant, flower, fruit, and vegetable species. Their presence within the genus Citrus was first reported in 1916, and it is well-known that the red color of the flesh and rind of blood (red or pigmented) oranges (Citrus sinensis L. Osbeck) is due to the presence of anthocyanins. They are also present in the young shoots, flowers, and peel of lemon (Citrus limon (L.) Burm. f.), citron (Citrus medica L.), and other citrus species. 
  • 861
  • 22 Dec 2022
Topic Review
Biological Synthesis of Nanoparticles from Microalgae
Microalgae have been a source of useful compounds mainly used as food and dietary supplements. They have been used as a source of metabolites that can participate in the synthesis of several nanoparticles through inexpensive and environmentally friendly routes alternative to chemical synthesis.
  • 361
  • 15 Jun 2023
Topic Review
Biolubricants Based on Vegetable Oils
Biolubricants are a kind of lubricant obtained from plants (mainly vegetable oils such as cardoon, corn, palm, safflower, or rapeseed oils), which makes them biodegradable and environmentally friendly (especially important if they are spilled in the environment).  They mainly act as anti-friction media between contact surfaces.
  • 444
  • 20 Sep 2023
Topic Review
Biomacromolecules for Wound Dressings
Biomacromolecules are particularly promising for the fabrication of novel, more effective antimicrobial wound dressings.
  • 322
  • 31 Mar 2023
Topic Review
Biomanufacturing of Cell-Derived Matrices
Cell-derived matrices (CDM) are the decellularised extracellular matrices (ECM) of tissues obtained by the laboratory culture process. CDM is developed to mimic, to a certain extent, the properties of the needed natural tissue and thus to obviate the use of animals. The composition of CDM can be tailored for intended applications by carefully optimising the cell sources, culturing conditions and decellularising methods.
  • 380
  • 15 Dec 2021
Topic Review
Biomass Feedstocks into Biofuel
The conversion of biomass to biofuels as a renewable energy source is continuously gaining momentum due to the environmental concerns associated with using fossil fuels. Biomass is a cost-effective, long-term natural resource that may be converted to biofuels such as biodiesel, biogas, bio-oil, and biohydrogen using a variety of chemical, thermal, and biological methods. Thermochemical processes are one of the most advanced biomass conversion methods, with much potential and room for improvement.
  • 159
  • 26 Jan 2024
Topic Review
Biomass Fly Ash-Based Geopolymers
The production of conventional cement involves high energy consumption and the release of substantial amounts of carbon dioxide (CO2), exacerbating climate change. Additionally, the extraction of raw materials, such as limestone and clay, leads to habitat destruction and biodiversity loss. Geopolymer technology offers a promising alternative to conventional cement by utilizing industrial byproducts and significantly reducing carbon emissions.
  • 486
  • 10 Aug 2023
Topic Review
Biomass Precursor
Sodium-ion batteries (SIBs) serve as the most promising next-generation commercial batteries besides lithium-ion batteries (LIBs). Hard carbon (HC) from renewable biomass resources is the most commonly used anode material in SIBs. The biomass precursors have a highly oxygenated, crosslinked, and disordered structure, resulting in an irregular HC structure that cannot be graphitized and makes it difficult to build a standard model. A variety of biomass have been demonstrated to have the potential to become precursor materials for high-performance HC anodes. Compared to other HC precursors such as sugars and polymers, biomass precursors, with their wide range of sources, low cost, and environmental friendliness, are undoubtedly the most promising green HC precursor materials. Owing to the diversity of biomass, the selection of suitable and reliable biomass raw materials depending on geographical conditions is crucial to the manufacturing of HC. In some studies, biomass-derived HCs show promising electrochemical performance, but a safe supply of biomass is hard to achieve.
  • 467
  • 31 Mar 2023
Topic Review
Biomass Wastes
Biomass wastes are abundant around us. They are renewable and inexpensive. Product manufacturing from renewable resources has caught increasing interest recently. Activated carbon preparation from biomass resources, including various trees, leaves, plant roots, fruit peels, and grasses, is a good example. In this paper, an overview of activated carbon production from biomass resources will be given. 
  • 633
  • 13 May 2021
  • Page
  • of
  • 467
Video Production Service