Topic Review
Bioethanol Production Using Seawater
  Bioethanol has many environmental and practical benefits as a transportation fuel. It is one of the best alternatives to replace fossil fuels due to its liquid nature, which is similar to the gasoline and diesel fuels traditionally used in transportation. In addition, bioethanol production technology has the capacity for negative carbon emissions, which is vital for solving the current global warming dilemma. However, conventional bioethanol production takes place based on an inland site and relies on freshwater and edible crops (or land suitable for edible crop production) for production, which has led to the food vs. fuel debate. Establishing a coastal marine biorefinery (CMB) system for bioethanol production that is based on coastal sites and relies on marine resources (seawater, marine biomass and marine yeast) could be the ultimate solution. In this paper, we aim to evaluate the environmental impact of using seawater for bioethanol production at coastal locations as a step toward the evaluation of a CMB system. Hence, a life cycle assessment for bioethanol production was conducted using the proposed scenario, named Coastal Seawater, and compared to the conventional scenario, named Inland Freshwater (IF). The impact of each scenario in relation to climate change, water depletion, land use and fossil depletion was studied for comparison. The Coastal Seawater scenario demonstrated an improvement upon the conventional scenario in all the selected impact categories. In particular, the use of seawater in the process had a significant effect on water depletion, showing an impact reduction of 31.2%. Furthermore, reductions were demonstrated in natural land transformation, climate change and fossil depletion of 5.5%, 3.5% and 4.2%, respectively. This indicates the positive impact of using seawater and coastal locations for bioethanol production and encourages research to investigate the CMB system.
  • 1.5K
  • 21 Aug 2021
Topic Review
Biofilm and Pathogen Inhibition in Cooling Towers Using Natural Chemistry
Industrial comfort cooling and process cooling typically employ water evaporative cooling towers (CTs) to dissipate reject heat.  This warm water, enriched with nutrient materials scrubbed from the air or in source water, provides a nurturing environment for a wide variety of neutrophilic microorganisms, some of which are human pathogens.  For example, cases of Legionella pneumophila infection have been traced to CT Systems that have become pubic hazards in recent years.  Typically, one or more toxic microbicides are applied to control the problem.  This article highlights two case studies that utilize ultra-softened (<0.3 mg/L total hardness), highly-concentrated chemical components, naturally present in almost all makeup water sources used by CT Systems, that can generate high-pH, high-TDS cooling water.  At sufficient concentrations, these two natural parameters are hostile to microorganisms, including protozoa and slime-forming (biofilm) bacteria that harbor pathogens.  Field testing for Adenosine Tri-Phosphate (ATP), reported in Relative Light Units (RLU), provides a quick, sensitive method to detect all water-borne microbiological activity present in CT Systems and verifies the effectiveness of the anti-microbial program by quantifiable data, reported as ATP-RLU.
  • 2.5K
  • 28 Oct 2020
Topic Review
Biofouling of Blood-Contacting Polymeric Membranes
An extracorporeal blood purification method called continuous renal replacement therapy uses a porous hollow-fiber polymeric membrane that is exposed to prolonged contact with blood. In that condition, like with any other submerged filtration membrane, the hemofilter loses its properties over time and use resulting in a rapid decline in flux. The most significant reason for this loss is biofilm formation, when proteins, blood cells and bacterial cells attach to the membrane surface in complex processes. One method allowing for longer patency of vascular access and a longer lifespan of the membrane is the use of anticoagulation. Other preventive measures include the modification of the membrane itself.
  • 255
  • 01 Oct 2023
Topic Review
Biofouling on Stainless Steel
In humid environments, the formation of biofilms and microfouling are known to be the detrimental processes that first occur on stainless steel surfaces. This is known as biofouling. Subsequently, the conditions created by metabolites and the activity of organisms trigger corrosion of the metal and accelerate corrosion locally, causing a deterioration in, and alterations to, the performance of devices made of stainless steel. The microorganisms which thus affect stainless steel are mainly algae and bacteria.
  • 1.4K
  • 24 Feb 2022
Topic Review
Biogenesis of Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines
Within the 2,5-dioxopiperazine-containing natural products generated by “head-to-tail” cyclization of peptides, those derived from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle, which can generate tetracyclic fragments of hexahydropyrrolo[2,3-b]indole or pyrrolidinoindoline skeleton fused to the 2,5-dioxopiperazine. Even more complex are the dimeric bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs), since they feature transannular (poly)sulfide bridges connecting C3 and C6 of their 2,5-dioxopiperazine rings. Homo- and heterodimers composed of diastereomeric epi(poly)thiodioxopiperazines increase the complexity of the family.
  • 503
  • 18 Nov 2022
Topic Review
Biogenic Silver Nanoparticles
Biogenic silver nanoparticles are environmentally safer compared to particles obtained by chemical or physical methods due to the absence of toxic compounds in the technological process, gentle synthesis conditions and the possibility of utilizing the biomass used in their production. Biogenic silver nanoparticles are capable of self-assembly, including that on various surfaces, and there are mechanisms for controlling their morphology and size. Approaches and methods for obtaining biogenic silver nanoparticles using various parts of plants, algae, fungi and microorganisms have been described.
  • 676
  • 17 Dec 2021
Topic Review
Biogenic Silver Nanoparticles for Their Biomedical Applications
Nanoparticles can be synthesized through physical, chemical, and biological routes, where biologically synthesized nanoparticles are also referred to as biogenic-synthesized nanoparticles or bionanoparticles. Bionanoparticles exploit the inherent reducing property of biological entities to develop cost-effective, non-toxic, time-efficient, sustainable, and stable nanosized particles. There is a wide array biomedical focus on metallic nanoparticles, especially silver nanoparticles, due to their distinctive physiochemical properties making them a suitable therapeutic molecule carrier. This research aims to provide a broad insight into the various classes of living organisms that can be exploited for the development of silver nanoparticles, and elaboratively review the interdisciplinary biomedical applications of biogenically synthesized silver nanoparticles in health and life sciences domains.
  • 583
  • 13 Mar 2023
Topic Review
Biogenic Sources of Synthesis of Nanoparticles
The green synthesis of NPs is employed by using plant extracts that offer a number of metabolites as reducing agents or capping agents, as well as the use of microbes as green nanofactories to tackle the issue of water cleanliness with respect to pharmaceutical waste. The concepts and principles of green chemistry were first presented by two scientists named Anastas and Warner. For green synthesis of NPs, the selection of solvent and reducing/stabilizing agent is of great significance and often governs the morphologies and size of NPs. Different types of green synthesis methods can be used depending upon the nature of the source of reducing or stabilizing agents, such as plants, algae, vitamins, etc., from which extracts can be collected. The forthcoming sections discuss the various routes utilized for green synthesis of photocatalysts employed in drug degradation.
  • 424
  • 07 Mar 2023
Topic Review
Biogenic Synthesis of Nanomaterials as Nanofertilizers
Nanotechnology is critically dependent on the usage of biosynthetic or “green” technologies, which are inexpensive, environmentally friendly, and produce minimal contamination.
  • 656
  • 02 Mar 2023
Topic Review
Bioglass 45S5
Oxides of sodium, calcium, silicon, and phosphorus form the Na2O–CaO–SiO2–P2O5 system, of which the most famous material—Bioglass 45S5—was developed in 1969 by Professor Larry Hench. In the middle of the 1980s, Bioglass 45S5 was introduced to the market, and it stimulated many research groups to an intensive investigation of bioactive glasses and their further applications.
  • 219
  • 29 Dec 2023
  • Page
  • of
  • 467
Video Production Service