Topic Review
Biochar in the Development of Electrochemical Printed Platforms
Biochar is a pyrolytic material with several environmental benefits such as reducing greenhouse gas emissions, sequestering atmospheric carbon and contrasting global warming. It has moved to the forefront for its conductivity and electron transfer properties, finding applications in the fabrication of electrochemical platforms. In this field, researchers have focused on low-cost biomass capable of replacing more popular and expensive carbonaceous nanomaterials (i.e., graphene, nanotubes and quantum dots) in the realization of sensitive cost-effectiveness and eco-friendly electrochemical tools. 
  • 517
  • 14 Sep 2022
Topic Review
Biochar Production and Properties
Biochar (BC) is the solid residue recovered from the thermal cracking of biomasses in an oxygen-poor atmosphere. BC has been increasingly explored as a sustainable, inexpensive, and viable alternative to traditional carbonaceous fillers for the development of polymer-based composites. In fact, BC exhibits high thermal stability, high surface area, and electrical conductivity; moreover, its main properties can be properly tuned by controlling the conditions of the production process.
  • 339
  • 08 Jul 2022
Topic Review
Biochar-Based Adsorption Processes: Considerations for Antibiotics Removal
Antibiotics are pharmaceuticals that are used to treat bacterial infections in humans and animals, and they are also used as growth promoters in livestock production. These activities lead to an alarming accumulation of antibiotics in aquatic environments, resulting in selection pressure for antibiotic resistance. Carbon-based materials (mainly in the form of activated carbons, carbon nanotubes, graphene, and biochars) are commonly used for the adsorption of antibiotics because of their four characteristics that contribute to adsorption, including specific surface area, micro- and mesopore structures, surface functional groups;mineral content and composition.
  • 177
  • 17 Nov 2023
Topic Review
Biochar-Based Materials for Wastewater Treatment
Biochar is an important, interesting, low-cost material with various agricultural, industrial, and scientific applications. Biochar is a name given to vegetable-derived charcoal, which can be used as an agent to improve soil and water quality. This carbon-rich substance can be produced by the carbonization of biomass residues (e.g., wood, dung, manure, or leaves) in thermal conversion processes, such as pyrolysis, torrefaction, and hydrothermal carbonization (HTC). Among them, pyrolysis is the most common process to obtain biochar under anaerobic conditions and high temperatures. In addition, heat, syngas, liquid fuels, and pyroligneous acid (wood vinegar) are also generated during this process.
  • 208
  • 18 Jan 2024
Topic Review
Biochemical-Modification of Titanium Oral Implants
Biochemical Modification of Titanium Surfaces (BMTiS) is the process that immobilize proteins, enzymes, or peptides on biomaterials for the purpose of inducing specific cell and tissue responses or, in other words, to control the tissue implant interface with molecules delivered directly to the interface. Biochemical surface modification utilizes critical organic components of bone to affect tissue response. The purpose of implant surface functionalization by BMTiS derives from the supposition that the ability to imitate bone tissue’s characteristics may increment implant surface performances, thus promoting the initial biological response. Therefore BMTiS, strictly speaking, refers only to the use of molecules normally present in the human body.
  • 583
  • 09 Jun 2021
Topic Review
Biocomposite Based on Natural Polymers
Biopolymers are materials obtained from renewable resources. Despite the exciting properties of biopolymers, such as biocompatibility and environmental sustainability, they do not present antimicrobial properties (except chitosan). However, this lack of antimicrobial properties can be solved by incorporating or encapsulating antimicrobial agents. Natural polymers possess low stability in aqueous media and limited mechanical strength, which could be improved through cross-linking strategies. Hydrogels are biocompatible materials that can be synthesized from natural polymers, forming a cross-linking material. Alginate, collagen, fibrin, chitosan, gelatin, and hyaluronic acid are some natural polymers used to synthesize hydrogels.
  • 480
  • 12 Jul 2022
Topic Review
Biocomposites
Biocomposites are an emerging material class with the potential to reduce a product’s through-life environmental impact relative to wholly synthetic composites. As with most materials, there are challenges and opportunities with the adoption of biocomposites at the each stage of the life cycle.
  • 1.4K
  • 15 Apr 2021
Topic Review
Biocompounds in Potato Peel
Potato germplasm is characterized by a huge variability in composition and concentration of secondary metabolites that play a role in increasing plant ability to cope with environmental challenges, due to their reported biocide activity on insects, bacteria, and fungi. Their distribution within the tuber is not uniform: Most of them are concentrated in the peel, made of periderm tissue, whose cell layers contain corky cell walls, which confer protection from phytopathogens, especially during tuber growth and storage. Thus, considering that potato peel is constantly exposed to biotic stresses, it is not surprising that it is a precious source of bioactive compounds, mainly phenolics and alkaloids, which have an enormous potential to deliver new bioprotectors.
  • 795
  • 13 Apr 2021
Topic Review
Bioconversion of Starch Base Food Waste into Bioethanol
Food wastes are organic wastes or biodegradables. They are generated from various sources such as restaurants and cafeterias, industrial sectors, commercial and domestic kitchens, food processing plants, and other areas where a large number of people consume food. The global demand for fuel keeps increasing daily. The massive depletion of fossil fuels and their influence on the environment as pollution is a severe problem. Meanwhile, food waste disposal is also a complex problem in solid-waste management since one-third of every food consumed is discarded as waste. The standard waste management methods, including food waste incineration and landfilling, are considered hazardous to the environment. Food waste constituents are majorly starch-based and contain various biomolecules, including sugar, lipids, proteins, vitamins, cellulose, etc. These polysaccharides can be hydrolysed into monosaccharides such as glucose, which can then be fermented using microorganisms to produce ethanol through the fermenting of sugars derived from enzymatic hydrolysis treatment of food wastes. The human food system is rich in starch, which can be a potential resource for bioethanol production.
  • 1.2K
  • 20 Sep 2022
Topic Review
Biodegradable Film Materials for Packaging
In today’s world, the problem of “white pollution” is becoming more and more serious, and many countries have paid special attention to this problem, and it has become one of the most important tasks to reduce polymer waste and to protect the environment. Due to the degradability, safety, economy and practicality of biodegradable packaging film materials, biodegradable packaging film materials have become a major trend in the packaging industry to replace traditional packaging film materials, provided that the packaging performance requirements are met. Degraded plastics are plastics that have been subjected to defined environmental conditions for a period of time and contain one or more steps that result in significant changes in the chemical structure of the material resulting in loss of certain properties (such as integrity, molecular mass, structure or mechanical strength) and/or fragmentation.
  • 536
  • 19 May 2022
  • Page
  • of
  • 467
Video Production Service