Topic Review
Bio-Composites
Bio-composites are degradable, renewable, non-abrasive, and non-toxic, with comparable properties to those of synthetic fiber composites and used in many applications in various fields. Naturals fibers are abundant and have low harvesting costs with adequate mechanical properties. Hazards of synthetic fibers, recycling issues, and toxic byproducts are the main driving factors in the research and development of bio-composites. Bio-composites are fabricated by combining natural fibers in a matrix material. The matrix material can be biodegradable, non-biodegradable, or synthetic. Synthetic matrix materials, along with natural fibers, are used to form hybrid bio-composites.
  • 5.4K
  • 09 Mar 2021
Topic Review
Bio-Inspired Hierarchical Fibres
Several naturally occurring biological systems, such as bones, nacre or wood, display hierarchical architectures with a central role of the nanostructuration that allows reaching amazing properties such as high strength and toughness. Developing such architectures in man-made materials is highly challenging, and recent research relies on this concept of hierarchical structures to design high-performance composite materials. This review deals more specifically with the development of hierarchical fibres by the deposition of nano-objects at their surface to tailor the fibre/matrix interphase in (bio)composites. Fully synthetic hierarchical fibre reinforced composites are described, and the potential of hierarchical fibres is discussed for the development of sustainable biocomposite materials with enhanced structural performance. Based on various surface, microstructural and mechanical characterizations, this review highlights that nano-objects coated on natural fibres (carbonnanotubes, ZnO nanowires, nanocelluloses) can improve the load transfer and interfacial adhesion between the matrix and the fibres, and the resulting mechanical performances of biocomposites. Indeed, the surface topography of the fibres is modified with higher roughness and specific surface area, implying increased mechanical interlocking with the matrix. As a result, the interfacial shear strength (IFSS) between fibres and polymer matrices is enhanced, and failure mechanisms can bemodified with a crack propagation occurring through a zig-zag path along interphases.
  • 876
  • 29 May 2021
Topic Review
Bio-Inspired Smart Nanoparticles in Oncology
Compared with traditional treatment, nanotechnology offers new therapeutic options for cancer due to its ability to selectively target and control drug release. Among the various routes of nanoparticle synthesis, plants have gained significant recognition. The tremendous potential of medicinal plants in anticancer treatments calls for a comprehensive research of existing studies on plant-based nanoparticles. The research examined various metallic nanoparticles obtained by green synthesis using medicinal plants. Plants contain biomolecules, secondary metabolites, and coenzymes that facilitate the reduction of metal ions into nanoparticles. These nanoparticles are believed to be potential antioxidants and cancer-fighting agents.
  • 484
  • 02 Nov 2022
Topic Review
Bio-Lubricants
An extremely efficient lubrication system is achieved in synovial joints by means of bio-lubricants and sophisticated nanostructured surfaces that work together.
  • 591
  • 25 Jul 2022
Topic Review
Bio-Monomers Used in the Synthesis of Hydrogels
Natural bio-based monomers derived from plants or animals are widely used in the synthesis of hydrogels and their compounds for the production of biopolymers and biomaterials that are biocompatible, biodegradable, non-toxic and of high porosity, characteristics much sought after in the biomedical field.
  • 637
  • 10 Nov 2022
Topic Review
Bio-Photonic Cavities
An eco-friendly approach to usual optical cavities, in which an electromagnetic radiation can release energy to matter by interacting with its molecular or atomic structure. Based on bio-inspired and biodegradable meta-surfaces, able to behave as a resonator for light, their optical response can be engineered at will to accomplish a particular optical task.  
  • 501
  • 24 Nov 2021
Topic Review
Bio-Residues Analysis of Fruit Crops
Food processing generates a large amount of bio-residues, which have become the focus of different studies aimed at valorizing this low-cost source of bioactive compounds. High fruit consumption is associated with beneficial health effects and, therefore, bio-waste and its constituents arouse therapeutic interest.
  • 478
  • 25 May 2021
Topic Review
Bio-Vitrimers for Sustainable Circular Bio-Economy
The traditional polymer circular economy (CE) continues to be challenging due to its reprocessing/recycle ability; also, at the same time, newly developed substitute materials have not expressed similar performance to conventional materials involved in contemporary applications. Hence, linear approaches such as “take-make-use-waste” have severely affected sustainability modules where non-renewable resources have been used at maximum levels. In addition, sustainability is termed along with the circular economy paradigm in recent times, although material sustainability differs from CE material. The circular economy mainly focuses on the economic, environmental and social impacts, whereas sustainability is more about an ecological importance. Globally, frameworks have been formed to enhance the sustainable environment. The United Nations (UN) has designed 17 sustainable development goals to be enforced in all countries in order to reach the goal of a sustainable society by 2030.
  • 671
  • 01 Nov 2022
Topic Review
Bioactive Agent-Loaded Electrospun Nanofiber Membranes
Despite the advances that have been achieved in developing wound dressings to date, wound healing still remains a challenge in the healthcare system. None of the wound dressings currently used clinically can mimic all the properties of normal and healthy skin. Electrospinning has gained remarkable attention in wound healing applications because of its excellent ability to form nanostructures similar to natural extracellular matrix (ECM). Electrospun dressing accelerates the wound healing process by transferring drugs or active agents to the wound site sooner.
  • 599
  • 09 Oct 2021
Topic Review
Bioactive Coatings
       In this entry, we compiled a variety of creative approaches to generate antimicrobial bioactive coatings. The benefits are very desirable: to create surfaces that either repel the attachment of viable microorganisms or kill microorganisms on contact without inducing inflammation or cytotoxicity to host tissues.        These coatings may consist of nanoparticles of pure elements (e.g. silver, copper, and zinc), sanitizing agents and disinfectants (e.g., quaternary ammonium ions and chlorhexidine), antibiotics (e.g., cefalotin, vancomycin, and gentamacin), or antimicrobial peptides (AMP).        Many bioactive coatings may involve unique delivery systems to direct their antimicrobial capacity against pathogens, but not commensals.  Coatings may also contain multiple antimicrobial substances to widen antimicrobial activity across multiple microbial species.
  • 1.3K
  • 26 Aug 2020
  • Page
  • of
  • 467
Video Production Service