Topic Review
Nanotechnology and Biodegradable Biopolymer-Based Packaging Materials
There is great interest in developing biodegradable biopolymer-based packaging materials whose functional performance is enhanced by incorporating active compounds into them, such as light blockers, plasticizers, crosslinkers, diffusion blockers, antimicrobials, antioxidants, and sensors. However, many of these compounds are volatile, chemically unstable, water-insoluble, matrix incompatible, or have adverse effects on film properties, which makes them difficult to directly incorporate into the packaging materials. These challenges can often be overcome by encapsulating the active compounds within food-grade nanoparticles, which are then introduced into the packaging materials. The presence of these nanoencapsulated active compounds in biopolymer-based coatings or films can greatly improve their functional performance. For example, anthocyanins can be used as light-blockers to retard oxidation reactions, or they can be used as pH/gas/temperature sensors to produce smart indicators to monitor the freshness of packaged foods. Encapsulated botanical extracts (like essential oils) can be used to increase the shelf life of foods due to their antimicrobial and antioxidant activities. The resistance of packaging materials to external factors can be improved by incorporating plasticizers (glycerol, sorbitol), crosslinkers (glutaraldehyde, tannic acid), and fillers (nanoparticles or nanofibers). Nanoenabled delivery systems can also be designed to control the release of active ingredients (such as antimicrobials or antioxidants) into the packaged food over time, which may extend their efficacy.
  • 1.1K
  • 22 Dec 2021
Topic Review
Functionalized Lanthanide Oxide Nanoparticles
Functionalized lanthanide oxide (Ln2O3) nanoparticles has been used for tumor targeting, medical imaging, and therapy. Among the medical imaging techniques, magnetic resonance imaging (MRI) is an important noninvasive imaging tool for tumor diagnosis due to its high spatial resolution and excellent imaging contrast, especially when contrast agents are used. However, commercially available low-molecular-weight MRI contrast agents exhibit several shortcomings, such as nonspecificity for the tissue of interest and rapid excretion in vivo. Recently, nanoparticle-based MRI contrast agents have become a hot research topic in biomedical imaging due to their high performance, easy surface functionalization, and low toxicity. Among them, functionalized Ln2O3 nanoparticles are applicable as MRI contrast agents for tumor-targeting and nontumor-targeting imaging and image-guided tumor therapy. Primarily, Gd2O3 nanoparticles have been intensively investigated as tumor-targeting T1 MRI contrast agents. T2 MRI is also possible due to the appreciable paramagnetic moments of Ln2O3 nanoparticles (Ln = Dy, Ho, and Tb) at room temperature arising from the nonzero orbital motion of 4f electrons. In addition, Ln2O3 nanoparticles are eligible as X-ray computed tomography contrast agents because of their high X-ray attenuation power. 
  • 691
  • 22 Dec 2021
Topic Review
Food-Grade Nanoemulsions
Nanoemulsions, exhibiting droplet sizes of <200 nm, represent liquid-in-liquid dispersions that are kinetically stable. Water and oil are the two incompatible liquids most extensively applied in commercial environments. Because of their small size, characteristics such as visible transparency, high surface area per unit volume, sound stability and tunable rheology are often observed. Additionally, large-scale nanoemulsions’ preparation is easily achievable in industrial conditions. Therefore, nanoemulsions are especially suitable for commercial applications.
  • 1.2K
  • 22 Dec 2021
Topic Review
Terpene Mini-Path for Terpenoids Bio-Production
Terpenoids constitute the largest class of natural compounds and are extremely valuable from an economic point of view due to their extended physicochemical properties and biological activities. An alternative to produce terpenoids is the use of biotechnological tools involving, for example, the construction of enzymatic cascades (cell-free synthesis) or a microbial bio-production thanks to metabolic engineering techniques. 
  • 639
  • 22 Dec 2021
Topic Review
Towards the Commercialization of Solid Oxide Fuel Cells
The solid oxide fuel cell (SOFC) has become a promising energy conversion technology due to its high efficiency and low environmental impact. Though there are several reviews on SOFCs, comprehensive reports that simultaneously combine the latest developments in materials and integration strategies are very limited. This paper addresses those issues and discusses SOFCs working principles, design types, the fuels used, and the required features for electrodes and electrolytes.
  • 546
  • 21 Dec 2021
Topic Review
Heavy Metal Adsorption Using Magnetic Nanoparticles
Research on contamination of groundwater and drinking water is of major importance. Due to the rapid and significant progress in the last decade in nanotechnology and its potential applications to water purification, such as adsorption of heavy metal ion from contaminated water, a wide number of articles have been published. An evaluating frame of the main findings of recent research on heavy metal removal using magnetic nanoparticles, with emphasis on water quality and method applicability, is presented. A large number of articles have been studied with a focus on the synthesis and characterization procedures for bare and modified magnetic nanoparticles as well as on their adsorption capacity and the corresponding desorption process of the methods are presented.
  • 578
  • 21 Dec 2021
Topic Review
Chemical Wood Surface Improvements
Increasing the use of wood in buildings is regarded by many as a key solution to tackle climate change. For this reason, a lot of research is carried out to develop new and innovative wood surface improvements and make wood more appealing through features such as increased durability, fire-retardancy, superhydrophobicity, and self-healing.
  • 692
  • 21 Dec 2021
Topic Review
RB6 Nanowires
With the rise of topological insulator samarium hexaboride (SmB6), rare-earth hexaboride (RB6) nanowires are the focus of the second wave of a research boom. Recent research has focused on new preparation methods, novel electronic properties, and extensive applications. 
  • 427
  • 21 Dec 2021
Topic Review
DMF as CO Surrogate in Carbonylation Reactions
Transition metal-catalyzed carbonylation reactions have emerged as one of the most relevant synthetic approaches for the preparation of carbonyl-containing molecules. The most commonly used protocol for the insertion of a carbonyl moiety is the use of carbon monoxide (CO) but, due to its toxic and explosive nature, this process is not suitable at an industrial scale. The chemistry of CO surrogates has received large attention as a way to use less expensive and more environmentally friendly methods. Among the various CO surrogates, N,N-dimethylformamide (DMF) has been paid greater attention due to its low cost and easy availability.
  • 1.1K
  • 21 Dec 2021
Topic Review
Design of Liquid-Crystalline Elastomeric Fluorescent Force Sensors
Liquid single crystal elastomers (LSCEs) containing carbazole fluorogenic components alter their luminescence when they are stretched along the director direction. The differential luminescent behavior arises from the distinct interaction between the carbazole fluorophores and their local environment before and after the application of the mechanical input. Indeed, the uniaxial deformation of the material, along its anisotropic direction, forces a closer mesogen–fluorophore interaction, which leads to the quenching of the carbazole luminescence. Importantly, this intermolecular interaction is intimately related to the intrinsic order present in the LSCE. As a result, the amount of light emitted by the material in the form of fluorescence diminishes upon deformation. Thus, the application of mechanical stimuli to liquid-crystalline elastomers furnishes to two interconvertible states for the system with distinct optical properties (with either different emission color or fluorescence intensity). The initial state of the material is completely restored once the applied force is removed. In this way, this kind of macromolecular system can transduce mechanical events into detectable and processable optical signals, thus, having great potential as optical force sensors. In this context, the realization of the distinct structural factors that govern the interactions established between the mesogenic and fluorogenic units at the supramolecular level upon deformation is essential for the development of efficient LSCE-based force sensors. In fact, not only the density of carbazole units and their connection to the main polymer backbone, but also the presence of long range molecular order in the system and the type of mesophase exhibited by the LSCE are key factors for the conception of efficient force sensors based on these self-organized polymer networks.
  • 627
  • 20 Dec 2021
  • Page
  • of
  • 467
ScholarVision Creations