Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 2534 word(s) 2534 2021-12-14 10:47:51 |
2 format corrected. + 2739 word(s) 5273 2021-12-21 02:47:48 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Liosis, C. Heavy Metal Adsorption Using Magnetic Nanoparticles. Encyclopedia. Available online: https://encyclopedia.pub/entry/17354 (accessed on 27 July 2024).
Liosis C. Heavy Metal Adsorption Using Magnetic Nanoparticles. Encyclopedia. Available at: https://encyclopedia.pub/entry/17354. Accessed July 27, 2024.
Liosis, Christos. "Heavy Metal Adsorption Using Magnetic Nanoparticles" Encyclopedia, https://encyclopedia.pub/entry/17354 (accessed July 27, 2024).
Liosis, C. (2021, December 20). Heavy Metal Adsorption Using Magnetic Nanoparticles. In Encyclopedia. https://encyclopedia.pub/entry/17354
Liosis, Christos. "Heavy Metal Adsorption Using Magnetic Nanoparticles." Encyclopedia. Web. 20 December, 2021.
Heavy Metal Adsorption Using Magnetic Nanoparticles
Edit

Research on contamination of groundwater and drinking water is of major importance. Due to the rapid and significant progress in the last decade in nanotechnology and its potential applications to water purification, such as adsorption of heavy metal ion from contaminated water, a wide number of articles have been published. An evaluating frame of the main findings of recent research on heavy metal removal using magnetic nanoparticles, with emphasis on water quality and method applicability, is presented. A large number of articles have been studied with a focus on the synthesis and characterization procedures for bare and modified magnetic nanoparticles as well as on their adsorption capacity and the corresponding desorption process of the methods are presented.

adsorption contamination magnetic nanoparticles heavy metals

1. Introduction

Nowadays, water issues, such as exhaustion of resources and quality of drinking water, have attracted the interest not only of researchers but also of national and international organizations and governments [1]. Terms such as water stress and water scarcity are now subjects of research on a daily basis. The first term refers to situations where the quantity of available water is not sufficient for agricultural, industrial, or domestic uses. It takes into account several physical aspects related to water resources, such as water quality, environmental flows, and water accessibility [2][3][4]. On the other hand, the second term refers to the volumetric abundance of water supply [5][6][7], which is the ratio of human water consumption to available water supply for a specific area [8][9]. The main factors that cause water crisis in the long run are population growth, expansion of industrial activities, urbanization, climate change, depletion of aquifers, and water contamination [10][11][12]. It is obvious that the coverage of global demands for safe drinking water in the near future is utopian, if we consider that water quantity is nearly constant due to the hydrologic cycle in various forms, such as seawater, groundwater, surface water, and rainwater [13][14]. However, climate change will affect the quality and quantity of potentially available drinking water due to increased flooding, more severe droughts, and enhanced toxicity of chemical contaminants in the environment [15][16]. Of more immediate concern is the efficiency of existing water treatment methods due to increasing pollution resulting from the anthropogenic activities [17]. Thus, purification of water from polluted sources is essential to enable the utilization of sustainable global water [18][19].
Water pollutants are categorized into point source, where the pollution originates from a single and identifiable source, and nonpoint source, where pollutants originate from a variety of sources [20]. Based on their main physicochemical characteristics, they can also be classified into radioactive, thermal, microorganism, nutrient, suspended solid and sediment, and organic and inorganic pollutants [21]. Inorganic pollutants consist of heavy metals, fertilizers, sulphides, ammonia, oxides of nitrogen, acids, and bases [22][23][24]. Since water quality is improving with increasing advances in technologies [17] and water purification is highly required to prevent toxic effects and disruption of ecological balance, this particular research review focuses on water contamination by heavy metals and ways of heavy metal removal.
Pollutants can contaminate water through both natural processes and anthropogenic activities [25][26]. Their concentrations in water depend on the local geological, hydrogeological, and geochemical characteristics of the aquifer. A significant burden on water quality and, consequently, public health is the increasing concentrations of heavy metals due to their toxicity, persistence, and bioaccumulative nature [25][27]. Unlike organic contaminants, heavy metals, which are toxic and mostly carcinogenetic, are not biodegradable and tend to accumulate in organisms [28]. Hence, exposure to toxic heavy metal through drinking water has long been a critical public health concern across the world [29]. Elements whose density exceeds 5 g/cm3 fall into the category of heavy metals [30] and are listed in Table 1 based on their toxicity, which is related to the maximum contaminant level (MCL) [31]. Specific differences in metal ion toxicities arise from differences in solubility, absorbability, transport, chemical reactivity, and the complexes that are formed within the body [32].
Table 1. Metal toxicity [31][33].
Heavy Metals MCL (mg/L) × 102
Zinc (Zn) 80
Nickel (Ni) 20
Copper (Cu) 25
Chromium (Cr) 5
Arsenic (As) 5
Cadmium (Cd) 1
Lead (Pb) 0.06
Mercury (Hg) 0.003
Heavy metals are classified into essential (Zn, Cu, Fe, and Co) and nonessential (Cd, Hg, As, and Cr) based on their toxicity. At low concentrations, essential heavy metals are harmless, unlike nonessential metals, which are highly toxic [34][35]. It is worth noting that for nonessential heavy metals, toxicity is very high, even at low concentrations [36][37]. Water contamination by heavy metals occurs in anthropogenic activities or in natural processes. Sources of contamination include metal corrosion, atmospheric deposition, soil erosion of metal ions, leaching of heavy metals, sediment resuspension, and metal evaporation from water resources to soil and groundwater. Phenomena such as weathering and volcanic eruptions fall into the category natural contamination [38]. In contrast, the major sources resulting from anthropogenic activities are mining wastes, landfill leaches, municipal wastewater, urban runoff, industrial wastewater, electroplating, and electronic and metal finishing industries [39][40]. Moreover, due to an increasing production of metals from technological activities, the problem of waste disposal has become of paramount importance; hence many aquatic environments face metal concentrations that do not meet water quality criteria designed to protect the environment, animals, and humans [41]. Metals such as Cu, Cd, Cr, Hg, and Ni have the ability to produce reactive radicals, resulting in DNA damage, lipid peroxidation, depletion of protein sulfhydryls, and other effects [42]. In this context, the availability and release of pollutants from anthropogenic sources needs to be considered [43]. The source of pollution and the effect of each heavy metal on human health are presented in Table 2.
Table 2. Heavy metal characteristics [16][33][44][45][46].
Heavy Metal Human Health Impacts Common Sources
Arsenic Skin damage, circulatory system issues, protein coagulation, nerve inflammation, muscle weakness, carcinogenicity Naturally occurring, electronic production, agricultural applications, nonferrous smelters, metallurgy, coal-fired and geothermal electrical generation, tanning, pigments, antifouling paints, light filters, fireworks, veterinary medicine
Cadmium Kidney damage, carcinogenicity, DNA damage, gastrointestinal irritation,
hyperactivity, renal failure
Naturally occurring, various chemical industries, agricultural applications (phosphatic fertilizers), pigments, anticorrosive metal coatings, plastic stabilizers, alloys, coal combustion
Chromium Allergic dermatitis, diarrhoea, nausea, vomiting, headache, neurotoxicity, kidney and liver damage Naturally occurring, steel manufacturing metallurgy, refractory, chemical industries, plating, pigments, textile and leather tanning, passivation of corrosion of cooling circuits, wood treatment
Copper Gastrointestinal issues, liver and kidney damage, anorexia, Wilson’s disease Household plumbing systems, naturally occurring, chemical and pharmaceutical equipment, pigments, alloys
Lead Kidney damage, reduced neural
development, carcinogenicity,
high blood pressure
Lead-based products (batteries), household plumbing systems, antiknock agents, pigments, glassware, ceramics, plastic, alloys, sheets, cable sheathings, solder
Mercury Kidney damage, nervous system damage, carcinogenicity, gingivitis, stomatitis, gastrointestinal issues, abortions Fossil fuel combustion, electronic industries, fluorescent light bulbs, electrical and measuring apparatus, catalysts, pharmaceuticals, dental fillings, scientific instruments, rectifiers, oscillators, solders
Nickel Allergic dermatitis, nausea, chronic asthma, coughing, carcinogenicity, hair loss Paper products, fertilizer plating, electroplating, batteries, arc welding, rods, pigments for paints and ceramics, surgical and dental prostheses, moulds for ceramic and glass containers, computer components, catalysts
Zinc Depression, lethargy, neurological signs, increased thirst, hyperactivity, physical dysfunction Mining, coal, waste combustion, steel processing, agricultural applications (phosphatic fertilizers), anticorrosion coating, batteries, cans, PVC stabilizers, medicines and chemicals, rubber industry, paints, soldering and welding fluxes
However, the removal of heavy metal ions from water has been a vital and challenging issue for several decades [47][48], without reaching the heart of the problem. On the other hand, in recent years nanotechnology has been integrated with several novel techniques for the removal of heavy metals from water systems to improve removal efficiency [49][50][51].
Several water purification methods for heavy metals exist, such as chemical precipitation and coagulation, flocculation, electrochemical methods, photocatalytic degradation, membrane filtration, ion exchange, bioremediation, and adsorption, just to mention few [16][52][53]. The present work focuses on the adsorption methods developed during the last decade, where nanotechnology contributed quite a lot to great progress. In this context, adsorption capacity and reuse efficiency of magnetic nanoparticles for capturing heavy metals in water environments are investigated. In addition, the findings are analysed based on certain characteristics, such as viability method, time of purification, water quality after purification (adsorption capacity), and nanoparticle reusability.
The main interest in the adsorption method is the interaction between nanoparticles and adsorbents, which depends on their physicochemical properties [54]. The term physicochemical covers the particle size, surface area, surface charge, agglomeration, morphology, surface coating, and so forth. Particles with sizes below 100 nm are defined as nanoparticles [55], and their applications vary according to their size [54][56][57]. Magnetic, mechanical, optical, and electrical properties affect the formation and aggregation of nanoparticles [44]. Aggregation of nanoparticles is affected by surface charge, particle size, and composition. Nanoparticles without magnetic properties have limited applicability in water purification due to the difficulty of separation from the aqueous solution [58]. Magnetic nanoparticles present advantages due to their large surface area, size, and shape-dependent catalytic properties and can be separated from the aqueous solution with the use of a magnet field [48][59]; thus many methods have been investigated for their potential application in both environmental and biological fields [60][61][62].
Our focus was on studies that have been published during the last decade. The selection of relevant research articles was performed in several stages. In the first stage, the search was based on article title, abstract, and keywords. The terms for the search were (a) water purification, (b) magnetic nanoparticles, (c) heavy metals, and (d) reusability. In the second stage, we selected articles according to purification method (adsorption process). The final stage included the expansion of the bibliography using the remaining articles’ reference lists.

2. Main Findings during the Last Decade

Restrictions on the use of bare hematite, magnetite, and maghemite nanoparticles force the majority of researchers to synthesize modified nanoparticles from iron oxide. A large number of parameters apart from those of the magnetic nanoparticle synthesis, which have been analysed above, affect the adsorption efficiency of heavy metals, among them being pH, contact time, temperature, adsorbent dose, and initial ion concentration [58][63]. pH is a factor that is involved not only at this stage of the method but also during the synthesis of nanoparticles; almost in all cases, the pH values are different between these two stages. pH is directly related to the competition ability of hydrogen and metal ions to the adsorbent surface active sites, for by increasing the pH value due to the formation of soluble hydroxylated metal complexes, the metal uptake capacity decreases [64], the maximum adsorption capacity that is observed varies from pH 2 to 9, and most researchers achieve optimum adsorption capacity at pH 5–7. The adsorbent dosage is directly related to the adsorbent capacity since it determines the contact areas between the adsorbent and the adsorbate [65]. Moreover, when the adsorbent dose is increasing, the number of available binding sites is also increasing; but as the equilibrium point of adsorption is reached, the efficiency does not reflect the available sites and remains steady [64]. A critical point also exists for the contact time parameter, since initially, removal rates increase rapidly with time; then they gradually decrease due to the availability of the binding sites until the equilibrium is reached [64]. Experiments show that even for the same adsorbent but for different pollutants, the ideal contact time may vary significantly, as in some cases it is between 30 min to 12 h [66]. The factor that has been investigated less is the effect of coexisting cations/anions, as in previous parameters, the initial ion concentration does not differ; thus removal rates increase with increasing initial concentrations until a point where the rates remain unaffected [64]. Research shows that these cations/anions that are contained in water have no significant influence on adsorption capacity [67][68], since the adsorbent surfaces suggest multisurface adsorption active sites. Moreover, differences in the radius of heavy metal ions have significant influence on adsorption efficiency [69], ions with a smaller radius have higher mobility in aqueous solutions, and therefore, they have a lower tendency to adsorb on magnetic nanoparticles. Additionally, the temperature that is used during the adsorption process varies between 15 and 45 °C, although in some rare occasions, it reaches 70 °C.
Every research method must be evaluated according to the criteria that have been set from the beginning. At this phase of the literature review, the results of heavy metal adsorption in aquatic solutions using bare or modified magnetic iron oxide nanoparticles are summarized. In order to be able to evaluate the methods through the experimental results since 2010, many factors must be taken into consideration. Initially, many researchers used different nanoparticle compounds for various pollutants, but also observed a large selectivity of the initial parameters (i.e., adsorbent dosage, contact time, pH, temperature), which creates difficulties in the categorization of the experimental results. Despite that, the main purpose of every work is the removal of heavy metals; thus adsorption capacity is the main factor that has been focused on in each research. Hence, Table 3 provides useful information, such as the time of equilibrium/contact time, pH, adsorption capacity or removal efficiency, and temperature during the adsorption process, which could lead to safe extractions for the applicability of the method, which is based on the findings during the last decade. Additionally, the findings are listed in chronological order. Due to several nanoparticle compounds, the equilibrium time is not constant but has large dispersion.
Table 3. Adsorption capacity, removal efficiency, and system conditions.
Year of Publish Magnetic
Nanoparticle
Heavy
Metal Ion
Adsorption
Capacity (mg/g) 1
Removal Efficiency (%) Time (min) pH Tempe-rature (°C) Number of
Cycles
Ref.
2010 Amino-functionalized Fe3O4 Cu(II) 25.77   5 6 25 15 [70]
Fe3O4 As(V) 44.1     3 25   [68]
Fe3O4 As(III) 49.8     7 25   [68]
MnFe2O4 As(V) 90.4     3 25   [68]
MnFe2O4 As(III) 93.8     7 25   [68]
CoFe2O4 As(V) 73.8     3 25   [68]
CoFe2O4 As(III) 100.3     7 25   [68]
Amino-functionalized Fe3O4@SiO2 Cu(II) 0.69 mmol/g       45 4 [71]
Amino-functionalized Fe3O4@SiO2 Cu(II) 0.60 mmol/g       35 4 [71]
Amino-functionalized Fe3O4@SiO2 Cu(II) 0.47 mmol/g       25 4 [71]
Amino-functionalized Fe3O4@SiO2 Pb(II) 0.54 mmol/g       45 4 [71]
Amino-functionalized Fe3O4@SiO2 Pb(II) 0.45 mmol/g       35 4 [71]
2010 Amino-functionalized Fe3O4@SiO2 Pb(II) 0.37 mmol/g       25 4 [71]
Amino-functionalized Fe3O4@SiO2 Cd(II) 0.33 mmol/g       45 4 [71]
Amino-functionalized Fe3O4@SiO2 Cd(II) 0.27 mmol/g       35 4 [71]
Amino-functionalized Fe3O4@SiO2 Cd(II) 0.20 mmol/g       25 4 [71]
GA–APTES-NPs Cu(II) 61.07 75.3 15 4–5.3 20 ± 0.1 3 [72]
Fe3O4 Pb(II) 36   30 5.5   5 [67]
EDA-MPs-10 Cr(VI) 61.35   60 2.5 35   [73]
EDA-MPs-8 Cr(VI) 60.98   60 2.5 35   [73]
EDA-MPs-6 Cr(VI) 49.5   60 2.5 35   [73]
EDA-MPs-4 Cr(VI) 36.63   60 2.5 35   [73]
EDA-MPs-2 Cr(VI) 32.15   60 2.5 35   [73]
Fe3O4-γ-Fe2O3 As(III) 3.69 96   2     [74]
Fe3O4-γ-Fe2O3 As(V) 3.71 96   2     [74]
Fe3O4-γ-Fe2O3 Cr(VI) 2.4 99   2     [74]
Fe3O4 Pb(II) 63.33     6     [75]
Fe3O4 Ni(II) 52.55     6     [75]
Fe3O4@SiO2 Pb(II)   97.34   6   5 [76]
Nanoiron Ni(II) 11.53     5 25   [77]
EDA-NMPs Cr(VI) 136.98   30 2.5 35   [78]
DEDA-NMPs Cr(VI) 149.25   30 2.5 35   [78]
TETA-NMPs Cr(VI) 204.08   30 2.5 35   [78]
TEPA-NMPs Cr(VI) 370.37   30 2 35   [78]
Magnetite NPs Cr(VI)   82 20 2     [79]
Fe3O4-γFe2O3 As(ΙΙΙ) 4.75 91 180 6.5     [80]
Fe3O4-γFe2O3 As(V) 4.85 92 180 6.5     [80]
2011 γ-Fe2O3 Hg(ΙΙ) 140     8     [66]
Iron oxide-coated perlite (IOCP) As(V) 0.39   5 6.5–7     [81]
γ-Fe2O3 onto ball-milled expanded perlite carrier As(V) 4.64     7     [82]
NiFe2O4 Cu(II) 55.83           [83]
NiFe2O4 Cr(VI) 36.95           [83]
NiFe2O4 Ni(II) 37.02           [83]
EDTAD-treated Fe3O4 Pb(II) 99.26     5.5 30   [84]
EDTAD-treated Fe3O4 Cd(II) 48.70     6 30   [84]
Fe3O4@SiO2-MIIP Cu(II) 24.2         5 [85]
Fe3O4@SiO2-NIP Cu(II) 5.2           [85]
Fe3O4–TW Ni(II) 38.3         5 [86]
γ-Fe2O3@Fe3O4 Cr(VI) 74.07   30   35   [87]
γ-Fe2O3@Fe3O4 Cr(VI) 78.13   30   25   [87]
γ-Fe2O3@Fe3O4 Cr(VI) 83.33   30   15   [87]
Polyrhodanine-coated
γ-Fe2O3
Hg(II) 179         5 [66]
Polypyrrole/F3O4 Cr(VI) 169.49   30–180 2 25 3 [88]
Polypyrrole/F3O4 Cr(VI) 204.08   30–180 2 35   [88]
2011 Polypyrrole/F3O4 Cr(VI) 238.09   30–180 2 45   [88]
Iron oxide-modified sewage sludge Pb(II) 42.4     6 25 ± 0.1   [89]
Iron oxide-modified sewage sludge Cu(II) 17.3     6 25 ± 0.1   [89]
Iron oxide-modified sewage sludge Cd(II) 14.7     7 25 ± 0.1   [89]
Iron oxide-modified sewage sludge Ni(II) 7.8     7 25 ± 0.1   [89]
SH-mSi@Fe3O4 Hg(II) 260     6.5 25 6 [90]
SH-mSi@Fe3O4 Pb(II) 91.5     6.5 25 6 [90]
Fe3O4@SiO2 Hg(II)   98         [91]
MWCNT/IO/CD Cu(II)   59   5.5 25.15   [92]
CS-co-MMB-co-PAA
hydrogel
Pb(II) 163.90     5.5 25   [93]
CS-co-MMB-co-PAA
hydrogel
Cd(II) 135.51     5.5 25   [93]
CS-co-MMB-co-PAA
hydrogel
Cu(II) 152.42     5.5 25   [93]
MWCNT/nano-iron oxide Cr(III)   82   5     [94]
MWCNT/nano-iron oxide Cr(III)   88   6     [94]
Nano-Fe3O4 Cu(II) 8.90     5 25   [95]
PEI-grafted magnetic porous Cu(II) 157.8   10 6–7.5   4 [96]
PEI-grafted magnetic porous Zn(II) 138.8   10 6–7.5   4 [96]
PEI-grafted magnetic porous Cd(II) 105.2   10 6–7.5   4 [96]
Fe3O4-coated boron nitride nanotubes As(V) 0.96   720 9 25 4 [97]
2012 Fe3O4-C Pb(II) 126     6     [98]
Pectin-coated iron
oxide
Cu(II) 48.9           [99]
Fe3O4@ZrO2 Cr(III) 24.5     8–9     [100]
MNPs–Ca-alginate
immobilized
P. chrysosporium
Pb(II) 176.33       35 5 [101]
AF-Fe3O4 Cu(II) 523.6   120 7     [102]
AF-Fe3O4 Cd(II) 446.4   120 7     [102]
AF-Fe3O4 Pb(II) 369.0   120 7     [102]
Fe3O4@APS@AA-co-CA Cd(II) 29.6   45 5.5 25 4 [103]
Fe3O4@APS@AA-co-CA Zn(II) 43.4   45 5.5 25 4 [103]
Fe3O4@APS@AA-co-CA Pb(II) 166.1   45 5.5 25 4 [103]
Fe3O4@APS@AA-co-CA Cu(II) 126.9   45 5.5 25 4 [103]
Fe3O4–SiO2-poly As(III) 84±5   120 6 30   [104]
Fe3O4–SiO2-poly Cu(II) 65±3   120 6 30   [104]
Fe3O4–SiO2-poly Cr(III) 77±3   120 5.3 30   [104]
Acid-coated Fe3O4 As(V) 16.56           [105]
Acid-coated Fe3O4 As(III) 46.06           [105]
γ-Fe2O3 functionalized with citrate ions Ni(II) 0.57 mmol/g   15 6 ± 0.5     [106]
Fe3O4@CTAB As(V) 23.07   2 6   5 [107]
Fe3O4-γ-Fe2O3 Cr(VI) 6     4 10   [107]
2012 Fe3O4-γ-Fe2O3 Cr(VI) 6.9     4 22   [107]
Fe3O4-γ-Fe2O3 Cr(VI) 7     4 50   [107]
Fe3O4–PEI800–MMT Cr(VI) 8.77           [108]
Fe3O4–PEI25000–MMT Cr(VI) 7.69           [108]
MPTS-CNTs/Fe3O4 Hg(II) 65.52     6.5 25 ± 0.2   [109]
MPTS-CNTs/Fe3O4 Pb(II) 65.40     6.5 25 ± 0.2   [109]
rGO–Fe(0)–Fe3O4 As(III) 44   60 7 25   [110]
rGO–Fe3O4 As(III) 21   60 7 25   [110]
Nanomagnetite (NMT) Cu(II) 14.3   70   45   [111]
Nanomagnetite (NMT) As(V) 6.5   120   45   [111]
Water-soluble Fe3O4
nanoparticles
Pb(II) 96.8   60 7 18   [112]
Water-soluble Fe3O4
nanoparticles
Cr(VI) 41.5   90 7 18   [112]
TF-SCMNPs Hg(II) 207 93.76 15 6 22.5   [113]
M-MIONPs Hg(II)   98.6 4 9 25   [114]
Fe3O4-RGO–MnO2 As(III) 14.04     7 25   [115]
Fe3O4-RGO–MnO2 As(V) 12.22     7 25   [115]
MWCNTs/Fe3O4 Pb(II) 41.77     5.3   5 [116]
MWCNTs/Fe3O4-NH2 Pb(II) 75.02     5.3   5 [116]
γ-Fe2O3 Cu(II) 71.42     6 ± 0.1 25 ± 1   [117]
γ-Fe2O3 Zn(II) 111.11     6 ± 0.1 25 ± 1   [117]
γ-Fe2O3 Pb(II) 84.95     6 ± 0.1 25 ± 1   [117]
Fe3O4/CS/PAA Cu(II) 193           [118]
2013 Fe3O4/SiO2 Pb(II) 14.65     4 27   [119]
Fe3O4/SiO2 Pb(II) 16.83     4 50   [119]
Fe3O4/SiO2 Pb(II) 17.65     4 70   [119]
Fe2O3–Al2O3 Cu(II) 4.98   60 6   4 [120]
Fe2O3–Al2O3 Pb(II) 23.75   60 6   4 [120]
Fe2O3–Al2O3 Ni(II) 32.36   60 6   4 [120]
Fe2O3–Al2O3 Hg(II) 63.69   60 6   4 [120]
Mixed magnetite–
hematite
Pb(II) 617.3   60 7 25   [121]
Mixed magnetite–
hematite
Cr(III) 277.0   120 7 25   [121]
Mixed magnetite–
hematite
Cd(II) 223.7   1440 7 25   [121]
Chitosan-coated MnFe2O4 (CCMNPs) Cu(II) 22.6     6   5 [122]
Chitosan-coated MnFe2O4 (CCMNPs) Cr(VI) 15.4     6   5 [122]
γ-PGA/Fe3O4 MNPs Cr(III) 162.6 99.66 120 6 30   [123]
CDpoly-MNPs Pb(II) 64.5   45 5.5–6 25 4 [124]
CDpoly-MNPs Cd(II) 27.7   45 5.5–6 25   [124]
CDpoly-MNPs Ni(II) 13.2   45 5.5–6 25   [124]
3D flowerlike a-Fe2O3 As(V) 41.46   120       [125]
3D flowerlike a-Fe2O3 Cr(VI) 33.82   120       [125]
Magnetite nanorods Pb(II) 112.86   60 5–6 25   [126]
Magnetite nanorods Zn(II) 107.27   60 5–6 25   [126]
2013 Magnetite nanorods Ni(II) 95.42   60 5–6 25   [126]
Magnetite nanorods Cd(II) 88.39   60 5–6 25   [126]
Magnetite nanorods Cu(II) 76.10   60 5–6 25   [126]
Maghemite nanotubes Pb(II) 71.42           [126]
Maghemite nanotubes Zn(II) 86.95           [126]
Maghemite nanotubes Cu(II) 111.11           [126]
EDTA-modified chitosan/SiO2/Fe3O4 Cu(II) 0.495 mmol/g   720 5 25 12 [127]
EDTA-modified chitosan/SiO2/Fe3O4 Pb(II) 0.045 mmol/g   720 5 25 12 [127]
EDTA-modified chitosan/SiO2/Fe3O4 Cd(II) 0.040 mmol/g   720 5 25 12 [127]
Fe3O4@mesoporous SiO2 core-shell Pb(II) 128.21         6 [128]
Fe3O4@mesoporous SiO2 core-shell Cu(II) 51.81         6 [128]
Fe3O4/GO Cr(VI) 32.33     4.5 20   [129]
Hollow nestlike
α-Fe2O3 spheres
As(V) 75.3 88 120       [130]
Hollow nestlike
α-Fe2O3 spheres
Cr(VI) 58.6 67 120       [130]
α-Fe2O3 nanofibers Cr(VI) 16.17       25 4 [131]
Fe3O4@SiO2–NH2 Pb(II) 243.9   180 5.2 25 5 [132]
Cyanex-301-coated SPION Cr(VI) 30.8     2 23   [133]
2014 S-doped Fe3O4@C Cu(II) 54.7     5 35 4 [134]
Fe3O4@SiO2-QTPA Cd(II)   95.29 720   25   [135]
Fe3O4@SiO2-QTPA Zn(II)   92.37 720   25   [135]
Fe3O4@SiO2-QTPA Cu(II)   91.06 720   25   [135]
Glycine-functionalized
maghemite nanoparticles
Cu(II) 625     6.5 25   [136]
Maghemite (γ-Fe2O3) Pb(II) 10.55     7.5 45   [137]
Maghemite (γ-Fe2O3) Zn(II) 4.79     7.5 45   [137]
Maghemite (γ-Fe2O3) Cd(II) 1.75     7.5 45   [137]
α-Fe2O3 Cr(VI) 17   300       [138]
3-MPA-coated SPION Cr(VI) 45     1 25   [139]
EDA-Fe3O4 NPs Cr(VI)   98 120 2   6 [140]
M-FeHT As(V) 1.2813   15 9 25   [141]
M-FeHT As(III) 0.1213   15 9 25   [141]
Fe3O4-GS Cr(VI) 17.29   240 1–3.5   5 [142]
Fe3O4-GS Pb(II) 27.95   120 6–7   5 [142]
Fe3O4-GS Hg(II) 23.03   120 6–7     [142]
Fe3O4-GS Cd(II) 27.83   120 6–7     [142]
Fe3O4-GS Ni(II) 22.07   120 6–7     [142]
Fe3O4@CPS Cu(II) 53.6     5 25 3 [143]
Fe3O4@CPS Cd(II) 87.1     6 25 3 [143]
Fe3O4@CPS Pb(II) 25.2     6 25 3 [143]
MWCNT
CoFe2O4–NH2
Pb(II) 140.1     6   5 [144]
Fe3O4/talc Cu(II)   72.15         [145]
Fe3O4/talc Ni(II)   50.23         [145]
2014 Fe3O4/talc Pb(II)   91.35         [145]
Magnetite nanoparticles Cr(VI) 121.9   60 5.5     [146]
CoFe2O4-rGO Pb(II) 299.4   80 5.3 25   [147]
CoFe2O4-rGO Pb(II) 274.7       35   [147]
CoFe2O4-rGO Pb(II) 253.2       45   [147]
CoFe2O4-rGO Hg(II) 157.9   60 4.6 25   [147]
CoFe2O4-rGO Hg(II) 105.1       35   [147]
CoFe2O4-rGO Hg(II) 90.49       45   [147]
Graphene Oxide−MnFe2O4 Pb(II) 673     5     [148]
MnFe2O4 Pb(II) 488     5 60   [148]
Graphene Oxide−MnFe2O4 As(III) 146     6.5 60   [148]
MnFe2O4 As(III) 97     6.5 60   [148]
Graphene Oxide−MnFe2O4 As(V) 207     4 60   [148]
MnFe2O4 As(V) 136     4 60   [148]
Water-soluble Fe3O4 Hg(II)   >99 10 7 25 3 [149]
Fe3O4@C Pb(II) 90.7 96.3 10       [150]
Fe3O4@C Hg(II) 83.1 98.1 10       [150]
Fe3O4@C Cd(II) 39.7 93.8 10       [150]
Fe3O4@silica xanthan gum Pb(II) 21.32     6 20 22 [151]
2015 Fe3O4-NTA Cu(II) 40.24   35 5     [152]
Magnetic chitosan/cellulose hybrid microspheres by
embedding γ-Fe2O3
Cu(II) 88.21       30   [153]
Magnetic chitosan/cellulose hybrid microspheres by
embedding γ-Fe2O3
Cd(II) 61.1       30   [153]
Magnetic chitosan/cellulose hybrid microspheres by
embedding γ-Fe2O3
Pb(II) 45.86       30   [153]
Mesoporous CoFe2O4 Pb(II) 32.11   480 5     [154]
MAMNPs Cd(II) 91.5   100 6   3 [155]
MAMNPs Hg(II) 237.6   100 6   3 [155]
MAMNPs Pb(II) 118.5   100 6   3 [155]
Fe3O4/MMT NC Pb(II) 263.15   2       [69]
Fe3O4/MMT NC Cu(II) 70.92   2       [69]
Fe3O4/MMT NC Ni(II) 65.78   2       [69]
Fe3O4@SiO2 core-shell
nanoparticles
Cd(II) 179           [156]
Fe3O4@SiO2 core-shell
nanoparticles
Pb(II) 156           [156]
Fe3O4 Ni(II) 362.318     8   5 [157]
Magnetic PAAAM/ PAMPS Zn(II) 289.12       25   [158]
Magnetic PAAAM/ PAMPS Cd(II) 385.2       25   [158]
Hollow magnetite
nanospheres
Cr(VI) 6.64     4 25   [159]
Hollow magnetite
nanospheres
Cr(VI) 7.31     4 35   [159]
Hollow magnetite
nanospheres
Cr(VI) 8.90     4 45   [159]
Hollow magnetite
nanospheres
Pb(II) 13.40     5 25   [159]
2015 Hollow magnetite
nanospheres
Pb(II) 14.11     5 35   [159]
Hollow magnetite
nanospheres
Pb(II) 18.47     5 45   [159]
SPION As(V) 0.91 mmol/g   60 3.8     [160]
SPION surface-coated with 3-mercaptopropionic acid (3-MPA) As(V) 1.92 mmol/g   60 3.6     [160]
Fe3O4@SiO2 Cd(II) 24.8   180 7 25 5 [161]
PPY/γ-Fe2O3 Cr(VI) 209   15 2   4 [162]
PANI/γ-Fe2O3 Cr(VI) 196   35 2   4 [162]
PPY/γ-Fe2O3 Cu(II) 171   15 5.5   4 [162]
PANI/γ-Fe2O3 Cu(II) 107   35 5.5   4 [162]
EDTA-Fe3O4 Pb(II) 508.4   40 4.2 45   [163]
EDTA-Fe3O4 Hg(II) 268.4   50 4.1 45   [163]
EDTA-Fe3O4 Cu(II) 301.2   90 5.1 45   [163]
EDTA-Fe3O4 Pb(II) 548.1       35   [163]
EDTA-Fe3O4 Hg(II) 242.2       35   [163]
EDTA-Fe3O4 Cu(II) 289.4       35   [163]
EDTA-Fe3O4 Pb(II) 481.2       25 5 [163]
EDTA-Fe3O4 Hg(II) 203.1       25 5 [163]
EDTA-Fe3O4 Cu(II) 246.1       25 5 [163]
Fe3O4@SiO2/Schiff Cu(II) 97.2   60 5     [164]
Fe3O4@SiO2/Schiff Zn(II) 81.6   60 5     [164]
PMMA-gft-Alg/Fe3O4 Pb(II) 62.5     5 50   [165]
PMMA-gft-Alg/Fe3O4 Cu(II) 35.71     5 50   [165]
SH-HMSMCS Hg(II)   95   6.2   5 [166]
Ppy–Fe3O4/rGO Cr(VI) 293.3     3 45   [167]
Ppy–Fe3O4/rGO Cr(VI) 226.8     3 30   [167]
Ppy–Fe3O4/rGO Cr(VI) 180.8     3 20   [167]
Co0.6Fe2.4O4 Pb(II) 80.32   30   45.18   [168]
Co0.6Fe2.4O4 Pb(II) 70.22       35.15   [168]
Co0.6Fe2.4O4 Pb(II) 44.58       25.15   [168]
Fe3O4/Mg–Al–CO3 Cd(II) 54.7       50   [169]
Fe3O4/Mg–Al–CO3 Cd(II) 50.5       40   [169]
Fe3O4/Mg–Al–CO3 Cd(II) 45.6       30   [169]
2016 NMag–CS Cu(II) 123.4   120 5.5     [170]
NMag–CS Pb(II) 114.9   120 5.5     [170]
NMag–CS Cr(VI) 116.2   120 5.5     [170]
NMag–CS Cd(II) 112.3   120 5.5     [170]
NMag–CS Ni(II) 109.8   120 5.5     [170]
Amino-functionalized Fe3O4@SiO2 Zn(II) 169.5   120 5 ± 0.1 25   [171]
Fe3O4 Cu(II) 37.04     4–6     [172]
Fe3O4 Pb(II) 166.67     4–6     [172]
Fe2O3 Cu(II) 19.61     5–6   4 [172]
Fe2O3 Pb(II) 47.62     3–4   4 [172]
Fe2O3@SiO2 As(III) 77.7   180 7 30   [173]
2016 Fe2O3@TiO2 As(V) 99.5   180 6 30   [173]
Fe3O4@SiO2-SH Hg(II) 132     6 25 5 [174]
Fe3O4-Aspa Ni(II) 87.183   70 6 40   [175]
Fe3O4-Aspa Ni(II) 58.582   70 6 35   [175]
Fe3O4-Aspa Ni(II) 34.602   70 6 30 6 [175]
Henna-Fe3O4 Cu(II) 28.90   20 5.2     [176]
Fe3O4/Bent-2.0 Pb(II) 81.5   30       [177]
Fe3O4/Bent-2.0 Cd(II) 21.7   30       [177]
Fe3O4/Bent-2.0 Cu(II) 19.6   30       [177]
Fe3O4 Pb(II)   100 30 5 25   [178]
Fe3O4 Cr(VI) 34.9     2 45   [179]
Fe3O4 Pb(II) 53.1     5 45   [179]
Fe3O4 Cr(VI) 26.8     2 35   [179]
Fe3O4 Pb(II) 52.8     5 35   [179]
Fe3O4 Cr(VI) 20.2     2 25 2 [179]
Fe3O4 Pb(II) 52.9     5 25 2 [179]
a-Fe2O3 Cd(II) 127.23     6 20   [180]
a-Fe2O3 Cd(II) 146.41     6 30   [180]
a-Fe2O3 Cd(II) 158.48     6 40   [180]
GO/Fe3O4 Pb(II) 65.96   180 3 20   [181]
GO/Fe3O4/LA Pb(II) 53.06   180 3 20   [181]
GO/Fe3O4/LA/EDTA Pb(II) 161.80   180 3 20   [181]
Amine-functionalized Fe3O4 Cu(II)   85 30 7     [182]
Fe3O4@SiO2@TiO2 Cu(II) 125   30       [183]
Fe3O4@SiO2@TiO2 Zn(II) 137   30       [183]
Fe3O4@SiO2@TiO2 Cd(II) 148   30       [183]
Fe3O4@SiO2@TiO2 Pb(II) 160   30       [183]
Rice straw/Fe3O4 NCs Pb(II)   91.18         [184]
Rice straw/Fe3O4 NCs Cu(II)   75.54         [184]
Cys-Fe3O4 Pb(II) 183.5   120 6   5 [185]
Cys-Fe3O4 Cd(II) 64.35   120 6   5 [185]
Nano-Fe3O4@Nano-SiO2 Pb(II) 1100 μmol/g           [186]
Nano-Fe3O4@Nano-SiO2 Cu(II) 300 μmol/g           [186]
Nano-Fe3O4@Nano-SiO2 Cd(II) 150 μmol/g           [186]
Nano-Fe3O4@Nano-SiO2 Hg(II) 100 μmol/g           [186]
a-Fe2O3 As(V) 38.48       20   [187]
Fe3O4-MnO2 Pb(II) 208.17       25   [188]
Fe3O4-MnO2 Cu(II) 111.90       25   [188]
Fe3O4-MnO2 Cd(II) 169.90       25   [188]
Fe3O4-MnO2 Zn(II) 100.24       25   [188]
Fe3O4-MnO2 Ni(II) 55.63       25   [188]
Fe3O4@SiO2-EDTA Cu(II) 37.59   10 5.3 30   [189]
Fe3O4@SiO2-EDTA Pb(II) 114.94   10 5.3 30   [189]
Fe3O4@SiO2-EDTA Ni(II) 32.15   10 5.3 30   [189]
Fe3O4@SiO2-EDTA Cd(II) 50.25   10 5.3 30   [189]
Fe3O4–FeB Cr(VI) 38.9     6.3     [190]
Fe3O4–TiO2 As(V) 11.434 μg/g   40 6.3 25   [191]
Fe3O4–TiO2 As(III)   93   11 25   [191]
Chitosan MWCNT/Fe3O4 Cr(VI) 360.1   30 2 45   [192]
2016 Chitosan MWCNT/Fe3O4 Cr(VI) 348.2       35   [192]
Chitosan MWCNT/Fe3O4 Cr(VI) 335.6       25   [192]
AMGO Cr(VI) 123.4     2   5 [193]
2017 Fe3O4@MnO2 Pb(II) 666.67   120   25   [194]
Fe3O4-SO3H Pb(II) 108.93     7 25   [195]
Fe3O4-SO3H Cd(II) 80.9     7 25   [195]
PGMA-MAn
Copolymer@Fe3O4
Pb(II) 53.33   20 5 25   [196]
PGMA-MAn
Copolymer@Fe3O4
Cu(II) 48.53     5     [196]
Fe3O4/CTAB Cr(VI)   95.77 720 4 25 ± 0.1   [197]
Fe3O4@Cu3(btc)2 Pb(II) 215.05         4 [198]
Fe3O4@Cu3(btc)2 Hg(II) 348.43         4 [198]
Fe3O4-CS-L Zn(II) 256.41   45 6 25 5 [199]
Fe3O4-CS-L Cd(II) 156.99   45 6 25 5 [199]
Fe3O4-CS-L Pb(II) 128.63   45 6 25 5 [199]
Fe3O4-mSiO2 Cu(II) 84.4           [200]
Fe3O4-mSiO2 Cd(II) 80.5           [200]
Fe3O4-mSiO2 Zn (II) 72.6           [200]
γ-Fe2O3@CS Cd(II) 15.2   60 5 20 ± 0.1 5 [201]
L-Cyst-Fe3O4 Pb(II) 18.8     2 45 5 [202]
L-Cyst-Fe3O4 Cr(VI) 34.5     6 45 5 [202]
MDA-Fe3O4 Pb(II) 333.3     5 30   [203]
ZrO2-Fe3O4 As(III) 113.48     7   5 [204]
Fe3O4@SiO2@CS-TETA-GO Cu(II) 324.7   16 6 30 6 [205]
CoFe2O4@SiO2–SH Hg(II) 641.0     8 25 5 [206]
CoFe2O4@SiO2–SH Hg(II) 628.9     8 35   [206]
CoFe2O4@SiO2–SH Hg(II) 591.7     8 45   [206]
EDTA-functionalized CoFe2O4 (EDTA-MNP) Cu(II) 73.26     6 50   [207]
IMSA Pb(II) 133.73           [208]
IMSA As(V) 21.61           [208]
CoFe2O4@SiO2 Cd(II) 199.9     7   5 [209]
CoFe2O4@SiO2 Cu(II) 177.8     7   5 [209]
CoFe2O4@SiO2 Pb(II) 181.6   30 7   5 [209]
TEPA chitosan/CoFe2O4 Cu(II) 168.067   50 5 30   [210]
TEPA chitosan/CoFe2O4 Pb(II) 228.311   50 5 30   [210]
2018 Lantana camara capped iron
nanoparticles
Ni(II) 227.2     6 60   [211]
NA-FeOx Cd(II) 11.3   60       [212]
NA-FeOx Cu(II) 12.3   60       [212]
Graphene oxide-Fe3O4 Pb(II) 373.14   10 6     [213]
PAE-AAm-g-MNPs Cu(II) 30.34     6   7 [214]
Fe3O4/LDH-AM Cu(II) 64.66   240     5 [215]
Fe3O4/LDH-AM Cd(II) 74.06   240     5 [215]
Fe3O4/LDH-AM Pb(II) 266.6   180     5 [215]
TEPA-GO/MnFe2O4 Pb(II) 263.2     5.5 30 4 [216]
GO/MnFe2O4 Pb(II) 133.3           [216]
MnFe2O4–BC Cd(II) 181.49     7 25 5 [217]
2018 CoFe2O4@SiO2 Hg(II) 149.3     7 25 5 [218]
CoFe2O4@SiO2 Hg(II) 144.9     7 35   [218]
CoFe2O4@SiO2 Hg(II) 131.6     7 45   [218]
p-BNMR@Fe3O4 Pb(II) 249.5     5.5 25   [219]
Aminated-Fe3O4 Cr(VI) 19.5     3.5   3 [220]
Aminated-Fe3O4 Pb(II) 21.2     3.5   3 [220]
Fe3O4/poly(C3N3S3) Pb(II) 232.6     6 25 7 [221]
Fe3O4/poly(C3N3S3) Hg(II) 344.8     6 25 7 [221]
rGO-PDTC/Fe3O4 Cu(II) 113.64     5 25 5 [222]
rGO-PDTC/Fe3O4 Cd(II) 116.28     6 25 5 [222]
rGO-PDTC/Fe3O4 Pb(II) 147.06     6 25 5 [222]
rGO-PDTC/Fe3O4 Hg(II) 181.82     6 25 5 [222]
d-MoS2/Fe3O4 Hg(II) 425.5   20     5 [223]
CHT/ALG/Fe3O4@SiO2
(8 beads)
Pb(II) 243.77     4.2 20   [224]
CHT/ALG/Fe3O4@SiO2
(1 bead)
Pb(II) 228.73     4.2 20   [224]
2019 Fe3O4/BC/AC Pb(II) 169.78     5 25 5 [225]
Fe3O4@FePO4 Cd(II) 13.51   15 7     [226]
Fe3O4@SiO2-NH-MFL Pb(II) 150.33   0.5 5     [227]
Fe3O4@SiO2-NH-MFL Cu(II) 70.7   0.5 5     [227]
DTT-Fe3O4@Au As(III)   68.8   5     [228]
rGO-poly(C3N3S3)/Fe3O4 Pb(II) 270.3   60 6 25 15 [229]
rGO-poly(C3N3S3)/Fe3O4 Hg(II) 400   60 6 25 15 [229]
APTES-Fe3O4 (3 wt%) As(V) 14.6   210 2 25   [230]
Fe2O3-SiO2-PAN Cr(III) 4.36           [231]
Fe2O3-SiO2-PAN Cu(II) 7.20           [231]
Fe2O3-SiO2-PAN Zn(II) 5.06           [231]
Fe2O3-SiO2-PAN Ni(II) 2.60           [231]
biochar-MnFe2O4 Pb(II) 154.94     5 25   [232]
biochar-MnFe2O4 Cd(II) 127.83     5 25   [232]
CoFe2O4@SiO2-EDTA Hg(II) 103.3   360 7 25 5 [233]
Fe3O4-CS@BT Cr(VI) 62.1     2 25 5 [234]
Fe3O4-CS@BT Cr(VI) 48.3     4 25   [234]
Fe3O4-CS@BT Cr(VI) 36.4     6 25   [234]
CMC/SA/graphene
oxide@Fe3O4
Cu(II) 55.96     5 30   [235]
CMC/SA/graphene
oxide@Fe3O4
Cd(II) 86.28     6 30   [235]
CMC/SA/graphene
oxide@Fe3O4
Pb(II) 189.04     5 30   [235]
Fe3O4/NaP/NH2 Pb(II) 181.81   480 5–6 60 10 [236]
Fe3O4/NaP/NH2 Cd(II) 50.25   240 5–6 70 10 [236]
Fe3O4 ECSBNC Cu(II) 90.90           [237]
Fe3O4 ECSBNC Cr(VI) 83.33           [237]
MNPs-COOH Pb(II) 0.855 mmol/g     6 25   [238]
MNPs-COOH Cu(II) 0.660 mmol/g     6 25   [238]
2019 MNPs-COOH Cd(II) 0.518 mmol/g     6 25   [238]
MNPs-COOH Ni(II) 0.441 mmol/g     6 25   [238]
CMC-Fe3O4 Pb(II) 152.0         6 [239]
Fe3O4-loaded CS NPs Cd(II) 97.76     5   5 [240]
CuFe2O4 Cd(II) 157.7     2     [241]
CoFe2O4 Pb(II) 63.1     12     [241]
HP-β-CD-GO/Fe3O4 Cu(II) 17.91     6   5 [242]
HP-β-CD-GO/Fe3O4 Pb(II) 50.39     5   5 [242]
Bentonite/CoFe2O4@MnO2-NH2 Cd(II) 115.79 98.88         [243]
2020 Fe3O4@SiO2@GLYMO(S) Cd(II) 80.64   55 7   5 [244]
Fe3O4@SiO2@GLYMO(S) Pb(II) 93.5   55 7   5 [244]
MGO Pb(II) 200   30 5     [65]
MGO Cr(III) 24.33   30 6     [65]
MGO Cu(II) 62.89   30 6     [65]
MGO Zn(II) 63.69   30 7     [65]
MGO Ni(II) 51.02   30 8     [65]
Proanthocyanidin-
functionalized Fe3O4
Cu(II) 18.8   30 8   5 [245]
Proanthocyanidin-
functionalized Fe3O4
Cd(II) 20.9   30 8     [245]
Proanthocyanidin-functionalized Fe3O4 Pb(II) 21.5   30 8     [245]
Ggh-g-PAcM/Fe3O4 Cu(II) 224.8       30   [246]
Ggh-g-PAcM/Fe3O4 Hg(II) 213.8       30   [246]
Fe3O4-GO hybrid (9:1) Pb(II) 107.56     6     [247]
Fe3O4-GO hybrid (5:1) Pb(II) 151.22     6     [247]
M-45 OA Pb(II) 42.553     6     [247]
M-45 OA Zn(II) 42.919     6     [248]
M-45 OA Cd(II) 42.373     7     [248]
M-55 OA Pb(II) 41.841     6     [248]
M-55 OA Zn(II) 42.735     6     [248]
M-55 OA Cd(II) 42.017     7     [248]
M-55+ Pb(II) 40.816     6     [248]
M-55+ Zn(II) 40.816     6     [248]
M-55+ Cd(II) 39.216     7     [248]
BNNF@Fe3O4 Pb(II) 203.75   50   25   [249]
Fe3O4@SiO2-NH2 Cd(II)   93       5 [250]
RH + iron oxide NPs As(V) 82   60     5 [251]
MnFe2O4 Zn(II) 454.4   120 6 25 3 [252]
CoFe2O4 Zn(II) 384.6   120 6 25 3 [252]
SiO2/CuFe2O4/PANI Cu(II) 285.71   300 5.3 30 4 [253]
MWCNT/γ-Fe2O3 Cr(VI) 208.1   150 4     [254]
MWCNT-PEI/γ-Fe2O3 Cr(VI) 352.3   150 4     [254]
Fe3O4 Cr(VI) 201.55   50     6 [255]
Fe3O4@Z-NCNT/PC Pb(II) 789.87   20 5.5   10 [256]
FO-BC-450 Cd(II) 151.3     2 25   [257]
2020 FO-BC-450 Cu(II) 219.8     2 25   [257]
FO-BC-450 Pb(II) 271.9     2 25   [257]
Fe2O3@SiO2@SH Hg(II)   98         [258]
γ-Fe2O3 coated Bacillus subtilis Cd(II) 32.6     4 30   [259]
Fe3O4-HBPA-ASA Cu(II) 136.66     8 25 5 [260]
Fe3O4-HBPA-ASA Cd(II) 88.36     8 25 5 [260]
Fe3O4-HBPA-ASA Pb(II) 165.46     8 25 5 [260]
Crystalline iron oxide nanoparticles (IO-NPs) Pb(II) 9.206     6 40   [261]
Crystalline iron oxide nanoparticles (IO-NPs) Ni(II) 9.666     6 40   [261]
Crystalline iron oxide nanoparticles (IO-NPs) Cu(II) 8.355     6 40   [261]
Crystalline iron oxide nanoparticles (IO-NPs) Zn(II) 9.106     6 40   [261]
Pec-g-PHEAA/Fe3O4 Cu(II) 248.6           [262]
Pec-g-PHEAA/Fe3O4 Hg(II) 240.2           [262]
Fe3O4 fibre Pb(II) 16.78         6 [263]
Fe3O4 powder Pb(II) 15.80         6 [263]
Iron oxide (MNPs) grafted (HPG) Cu(II) 0.700 mg/mg   120 9 20   [264]
Iron oxide (MNPs) grafted (HPG) Ni(II) 0.451 mg/mg   120 9 20   [264]
Nano-CI Pb(II) 1900 μmol/g   30 6     [265]
Nano-CI Cu(II) 2250 μmol/g   30 7     [265]
Nano-CI Cd(II) 850 μmol/g   30 7     [265]
Nano-CIC Pb(II) 2700 μmol/g   30 4     [265]
Nano-CIC Cu(II) 4250 μmol/g   30 6     [265]
Nano-CIC Cd(II) 1800 μmol/g   30 6     [265]
Nano-CIS Pb(II) 2600 μmol/g   10 4     [265]
Nano-CIS Cu(II) 4700 μmol/g   10 6     [265]
Nano-CIS Cd(II) 1900 μmol/g   10 6     [265]
1 Cases with unit of adsorption capacity that is different from mg/g are listed next to the respective value.
A crucial stage in the evaluation of the applicability of the experimental methods is the possibility of reducing the production cost and time. This reduction could be achieved by reusing the existing nanoparticles; thus the stages of synthesis and characterization could be avoided. Desorption processes may occur either by thermal treatment or through suitable desorbing agents and are necessary for recycling [70], so the nanoparticles could be used again. Among the selected articles, all have employed desorbing agents during the desorption process. The performance of the desorption process for magnetic nanoparticles is directly related to the size, coating, magnetic behaviour [266] and pH of the solution [267], while other critical factors are the kind of regenerative solutions (i.e., NaOH, HCl) but also their concentration. For example, 2 M of HNO3 has a desorption efficiency of Cr (VI) equal to 73%, but the efficiency drops to 20% when 0.1 M of HNO3 is employed [136]. Additional benefits of the desorption process are the limited cost of desorbing agents and the time of the process, which could be achieved in less than 1 h. The usage of the desorption process is enhanced by the ease of collection, which comes from the selectivity of the paramagnetic nanoparticles assisting the technique, because they could be readily separated from the solution when a magnetic field is applied; thus iron oxide nanoparticles are more preferable to other nanoparticles with no magnetic cores. Additionally, computational fluid dynamics could be employed at this stage, reducing the cost of the materials. The major advantage of computational water treatment methods compared with an experimental method is that the steps of synthesis and characterization of magnetic nanoparticles are not time-consuming since they do not exist. The aims of microfluidic mixing and driving simulations for water purification from heavy metal ions are to achieve rapid mixing and desired guidance of nanoparticles [48][51][59][268].
Nonetheless, the effectiveness of the adsorption–desorption process is evaluated by the efficiency of heavy metal adsorption after each recycling. An ideal adsorbent is considered to be one that simultaneously possesses high adsorption capability and high desorption efficiency [269]. Of critical importance is the effectiveness of the process in several studies, in which up to five cycles of adsorption without a significant decrease in efficiency have been achieved [270]. In addition, high adsorption and desorption efficiencies equal to 98.4% after seven cycles [214] and 98% (constant) for over 15 cycles have been reported [70]. The deterioration of active binding sites on the surface absorbent during recycling results in a decrease in efficiency. It should be noted, however, that in some cases after the desorption process, the adsorption efficiency did not decrease, but instead, it increased in the next cycle [271]; this phenomenon is based on the increase in the positively charged surface of nanoparticles, which leads to increased electrostatic attraction forces between the iron oxide nanoparticles and the pollutant. Recycling of the adsorbent is important to obtain the process that enhances the viability of the adsorption method.
The recycling efficiency and adsorption capacity for each cycle are presented in Table 4 and Table 5, respectively. We must mention here that there are very few articles that have investigated the adsorption capacity. This fact has a negative impact on the applicability of the method. During the literature review were recorded cases where the recycling effectiveness was measured with adsorption capacity instead of efficiency. Additionally, both adsorption and desorption efficiency decreased through the regeneration cycles and due to the difficulty in reversing adsorption [272].
Table 4. Recycling efficiency (%).
Pollutant 1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle Ref.
Pb(II) 90.12 88.05 85.65 81.35   [270]
Cu(II) 93.70       58.66 [99]
Pb(II)         90 [101]
Cr(VI) 55 88   90   [271]
Pb(II) 97.34       90 [76]
Hg(II)         ≥96 [66]
Pb(II)         90 [106]
Pb(II) 93.5       89.3 [244]
Cu(II) 80.64       73.3 [244]
As(V) 95       56 [251]
Cd(II)       76.4   [257]
Cu(II)       80.4   [257]
Pb(II)       70.2   [257]
Hg(II) >90       ~75.5 [233]
Cd(II) 98.8 95.1 91.7 84.6 78.3 [201]
Cd(II) 99.96     97.25   [209]
Cu(II) 88.05     84.15   [209]
Pb(II) 90.79     87.12   [209]
Pb(II) 96.2       86.4 [163]
Hg(II) 95.1       85.9 [163]
Cu(II) 96.5       87.6 [163]
Table 5. Recycling adsorption capacity (mg/g).
Pollutant 1st Cycle 2nd Cycle 3rd Cycle 4th Cycle 5th Cycle 6th Cycle Ref.
Cr(VI) 132.56 130.62 127.52 125.97 124.42 121.71 [255]
Cu(II) 197.5 196.5 195 194.4     [253]

References

  1. Olvera, R.C.; Silva, S.L.; Robles-Belmont, E.; Lau, E.Z. Review of Nanotechnology Value Chain for Water Treatment Applications in Mexico. Resour. Technol. 2017, 3, 1–11.
  2. Jiang, L.; Jiapaer, G.; Bao, A.; Yuan, Y.; Zheng, G.; Guo, H.; Yu, T.; De Maeyer, P. The Effects of Water Stress on Croplands in the Aral Sea Basin. J. Clean. Prod. 2020, 254, 120114.
  3. Lee, U.; Xu, H.; Daystar, J.; Elgowainy, A.; Wang, M. AWARE-US: Quantifying Water Stress Impacts of Energy Systems in the United States. Sci. Total Environ. 2019, 648, 1313–1322.
  4. Ward, F.A.; Mayer, A.S.; Garnica, L.A.; Townsend, N.T.; Gutzler, D.S. The Economics of Aquifer Protection Plans under Climate Water Stress: New Insights from Hydroeconomic Modeling. J. Hydrol. 2019, 576, 667–684.
  5. Dinar, A.; Tieu, A.; Huynh, H. Water Scarcity Impacts on Global Food Production. Glob. Food Sec. 2019, 23, 212–226.
  6. Zhao, H.; Qu, S.; Guo, S.; Zhao, H.; Liang, S.; Xu, M. Virtual Water Scarcity Risk to Global Trade under Climate Change. J. Clean. Prod. 2019, 230, 1013–1026.
  7. Jia, X.; Klemeš, J.J.; Alwi, S.R.W.; Varbanov, P.S. Regional Water Resources Assessment Using Water Scarcity Pinch Analysis. Resour. Conserv. Recycl. 2020, 157, 104749.
  8. Moursi, H.; Kim, D.; Kaluarachchi, J.J. A Probabilistic Assessment of Agricultural Water Scarcity in a Semi-Arid and Snowmelt-Dominated River Basin under Climate Change. Agric. Water Manag. 2017, 193, 142–152.
  9. Defining Water Scarcity, Water Stress, and Water Risk. Available online: https://pacinst.org/water-definitions/ (accessed on 14 January 2019).
  10. McNabb, D. The Population Growth Barrier. In Global Pathways to Water Sustainability, 1st ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 67–81.
  11. McNabb, D. Alternative Sources of Water Supply. In Global Pathways to Water Sustainability, 1st ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 251–262.
  12. Omer, A.; Elagib, N.A.; Zhuguo, M.; Saleem, F.; Mohammed, A. Water Scarcity in the Yellow River Basin under Future Climate Change and Human Activities. Sci. Total Environ. 2020, 749, 141446.
  13. Sharma, S.; Sanghi, R.; Mudhoo, A. Green Practices to Save Our Precious “Water Resource.” In Advances in Water Treatment and Pollution Prevention; Sharma, S., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2012; pp. 1–36.
  14. Liu, J.; Liu, Q.; Yang, H. Assessing Water Scarcity by Simultaneously Considering Environmental Flow Requirements, Water Quantity, and Water Quality. Ecol. Indic. 2016, 60, 434–441.
  15. Boholm, Å.; Prutzer, M. Experts’ Understandings of Drinking Water Risk Management in a Climate Change Scenario. Clim. Risk Manag. 2017, 16, 133–144.
  16. Joseph, L.; Jun, B.-M.; Flora, J.R.V.; Park, C.M.; Yoon, Y. Removal of Heavy Metals from Water Sources in the Developing World Using Low-Cost Materials: A Review. Chemosphere 2019, 229, 142–159.
  17. Hao, X.; Chen, G.; Yuan, Z. Water in China. Water Res. 2020, 169, 115256.
  18. Mo, W.; Zhang, Q. Energy-Nutrients-Water Nexus: Integrated Resource Recovery in Municipal Wastewater Treatment Plants. J. Environ. Manag. 2013, 127, 255–267.
  19. Xia, J.; Duan, Q.-Y.; Luo, Y.; Xie, Z.-H.; Liu, Z.-Y.; Mo, X.-G. Climate Change and Water Resources: Case Study of Eastern Monsoon Region of China. Adv. Clim. Chang. Res. 2017, 8, 63–67.
  20. Peirce, J.J.; Weiner, R.F.; Vesilind, P.A.; Peirce, J.J.; Weiner, R.F.; Vesilind, P.A. Water Pollution. Environ. Pollut. Control. 1998, 31–55.
  21. Wasewar, K.L.; Singh, S.; Kansal, S.K. Process intensification of treatment of inorganic water pollutants. In Inorganic Pollutants in Water; Devi, P., Singh, P., Kansal, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 245–271.
  22. Orubu, C.O.; Omotor, D.G. Environmental Quality and Economic Growth: Searching for Environmental Kuznets Curves for Air and Water Pollutants in Africa. Energy Policy 2011, 39, 4178–4188.
  23. Liu, H.; Feng, S.; Du, X.; Zhang, N.; Liu, Y. Comparison of Three Sorbents for Organic Pollutant Removal in Drinking Water. Energy Procedia 2011, 5, 985–990.
  24. Ahmed, M.J.; Hameed, B.H.; Hummadi, E.H. Review on Recent Progress in Chitosan/Chitin-Carbonaceous Material Composites for the Adsorption of Water Pollutants. Carbohydr. Polym. 2020, 247, 116690.
  25. Kim, K.H.; Keller, A.A.; Yang, J.K. Removal of Heavy Metals from Aqueous Solution Using a Novel Composite of Recycled Materials. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 425, 6–14.
  26. Hu, G.; Bakhtavar, E.; Hewage, K.; Mohseni, M.; Sadiq, R. Heavy Metals Risk Assessment in Drinking Water: An Integrated Probabilistic-Fuzzy Approach. J. Environ. Manag. 2019, 250, 109514.
  27. Khan, M.U.; Muhammad, S.; Malik, R.N.; Khan, S.A.; Tariq, M. Heavy Metals Potential Health Risk Assessment through Consumption of Wastewater Irrigated Wild Plants: A Case Study. Hum. Ecol. Risk Assess. 2016, 22, 141–152.
  28. Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418.
  29. Sarkar, A.; Paul, B. The Global Menace of Arsenic and Its Conventional Remediation-A Critical Review. Chemosphere 2016, 158, 37–49.
  30. Barakat, M.A. New Trends in Removing Heavy Metals from Industrial Wastewater. Arab. J. Chem. 2011, 4, 361–377.
  31. Babel, S.; Kurniawan, T.A. Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. J. Hazard. Mater. 2003, 97, 219–243.
  32. Stohs, S.J.; Bagchi, D. Oxidative Mechanisms in the Toxicity of Metal Ions. Free. Radic. Biol. Med. 1995, 18, 321–336.
  33. Parmar, M.; Thakur, L.S. Heavy Metal Cu, Ni and Zn: Toxicity, Health Hazards and Their Removal. Int. J. Plant Sci. 2013, 3, 143–157.
  34. Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197.
  35. Kim, J.-J.; Kim, Y.-S.; Kumar, V. Heavy Metal Toxicity: An Update of Chelating Therapeutic Strategies. J. Trace Elem. Med. Biol. 2019, 54, 226–231.
  36. Rahimi, M.; Jafari, O.; Mohammdifar, A. Intensification of Liquid-Liquid Mass Transfer in Micromixer Assisted by Ultrasound Irradiation and Fe3O4 Nanoparticles. Chem. Eng. Process. Process Intensif. 2017, 111, 79–88.
  37. Zhang, Z.; Chen, K.; Zhao, Q.; Huang, M.; Ouyang, X. Comparative Adsorption of Heavy Metal Ions in Wastewater on Monolayer Molybdenum Disulfide. Green Energy Env. 2020, 6, 751–758.
  38. Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Molecular, Clinical and Environmental Toxicicology Volume 3: Environmental Toxicology. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164.
  39. Qiao, Y.; Yang, Y.; Gu, J.; Zhao, J. Distribution and Geochemical Speciation of Heavy Metals in Sediments from Coastal Area Suffered Rapid Urbanization, a Case Study of Shantou Bay, China. Mar. Pollut. Bull. 2013, 68, 140–146.
  40. Singh, R.; Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic Contamination, Consequences and Remediation Techniques: A Review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270.
  41. Gautam, R.K.; Sharma, S.K.; Mahiya, S.; Chattopadhyaya, M.C. Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation. In Heavy Metals In Water: Presence, Removal and Safety Heavy; Sharma, S.K., Ed.; Royal Society of Chemistry: London, UK, 2014; pp. 1–24.
  42. Valko, M.; Morris, H.; Cronin, T.D.M. Metals, Toxicity and Oxidative Stress Metals. Curr. Med. Chem. 2005, 12, 1161–1208.
  43. Schroeder, H.; Duester, L.; Fabricius, A.L.; Ecker, D.; Breitung, V.; Ternes, T. ASediment Water (Interface) Mobility of Metal(Loid)s and Nutrients under Undisturbed Conditions and during Resuspension. J. Hazard. Mater. 2020, 394, 122543.
  44. Bhateria, R.; Singh, R. A Review on Nanotechnological Application of Magnetic Iron Oxides for Heavy Metal Removal. J. Water Process Eng. 2019, 31, 100845.
  45. Sonone, S.S.; Jadhav, S.V.; Sankhla, M.S.; Kumar, R. Water Contamination by Heavy Metals and Their Toxic Effect on Aquaculture and Human Health through Food Chain. Lett. Appl. NanoBioScience. 2020, 10, 2148–2166.
  46. Bradl, H.B. Sources and Origins of Heavy Metals. In Interface Science and Technology; Bradl, H.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–27.
  47. Kyzas, G.Z.; Bomis, G.; Kosheleva, R.I.; Efthimiadou, E.K.; Favvas, E.P.; Kostoglou, M.; Mitropoulos, A.C. Nanobubbles Effect on Heavy Metal Ions Adsorption by Activated Carbon. Chem. Eng. J. 2019, 356, 91–97.
  48. Liosis, C.; Karvelas, E.G.; Karakasidis, T.; Sarris, I.E. Numerical Study of Magnetic Particles Mixing in Waste Water under an External Magnetic Field. J. Water Supply Res. Technol. 2020, 69, 266–275.
  49. Parvin, F.; Rikta, S.Y.; Tareq, S.M. Application of Nanomaterials for the Removal of Heavy Metal From Wastewater. In Nanotechnology in Water and Wastewater Treatment Theory and Applications Micro and Nano Technologies; Ahsan, A., Ismail, A.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 137–157.
  50. Karvelas, E.; Liosis, C.; Karakasidis, T.; Sarris, I. Mixing of Particles in Micromixers under Different Angles and Velocities of the Incoming Water. Proceedings 2018, 2, 577.
  51. Karvelas, E.; Liosis, C.; Benos, L.; Karakasidis, T.; Sarris, I. Micromixing Efficiency of Particles in Heavy Metal Removal Processes under Various Inlet Conditions. Water 2019, 11, 1135.
  52. Wu, Y.; Pang, H.; Liu, Y.; Wang, X.; Yu, S.; Fu, D.; Chen, J.; Wang, X. Environmental Remediation of Heavy Metal Ions by Novel-Nanomaterials: A Review. Environ. Pollut. 2019, 246, 608–620.
  53. Zhu, L.; Li, C.; Wang, J.; Zhang, H.; Zhang, J.; Shen, Y.; Li, C.; Wang, C.; Xie, A. A Simple Method to Synthesize Modified Fe3O4 for the Removal of Organic Pollutants on Water Surface. Appl. Surf. Sci. 2012, 258, 6326–6330.
  54. Turan, N.B.; Erkan, H.S.; Engin, G.O.; Bilgili, M.S. Nanoparticles in the Aquatic Environment: Usage, Properties, Transformation and Toxicity—A Review. Process. Saf. Environ. Prot. 2019, 130, 238–249.
  55. Nowack, B.; Bucheli, T.D. Occurrence, Behavior and Effects of Nanoparticles in the Environment. Environ. Pollut. 2007, 150, 5–22.
  56. Gatoo, M.A.; Naseem, S.; Arfat, M.Y.; Mahmood, D.A.; Qasim, K.; Zubair, S. Physicochemical Properties of Nanomaterials: Implication in Associated Toxic Manifestations. Biomed Res. Int. 2014, 2014.
  57. Zhang, J.; Wu, L.; Chan, H.K.; Watanabe, W. Formation, Characterization, and Fate of Inhaled Drug Nanoparticles. Adv. Drug Deliv. Rev. 2011, 63, 441–455.
  58. Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of Nanomaterials as Adsorbents in Heavy Metal Ion Removal from Waste Water: A Review. J. Water Process Eng. 2020, 33, 101038.
  59. Karvelas, E.; Liosis, C.; Karakasidis, T.; Sarris, I. Micromixing Nanoparticles and Contaminated Water Under Different Velocities for Optimum Heavy Metal Ions Adsorption. Env. Sci. Proc. 2020, 2, 65.
  60. Du, X.; He, J.; Zhu, J.; Sun, L.; An, S. Ag-Deposited Silica-Coated Fe3O4 Magnetic Nanoparticles Catalyzed Reduction of p-Nitrophenol. Appl. Surf. Sci. 2012, 258, 2717–2723.
  61. Mohammed, L.; Gomaa, H.G.; Ragab, D.; Zhu, J. Magnetic Nanoparticles for Environmental and Biomedical Applications: A Review. Particuology. 2017, 30, 1–14.
  62. Faraji, M.; Yamini, Y.; Saleh, A.; Rezaee, M.; Ghambarian, M.; Hassani, R. A Nanoparticle-Based Solid-Phase Extraction Procedure Followed by Flow Injection Inductively Coupled Plasma-Optical Emission Spectrometry to Determine Some Heavy Metal Ions in Water Samples. Anal. Chim. Acta 2010, 659, 172–177.
  63. Shaikh, M.N.; Helal, A.; Kalanthoden, A.N.; Najjar, B.; Abdul Aziz, M.; Mohamed, H.D. Sub-Nanometric Rh Decorated Magnetic Nanoparticles as Reusable Catalysts for Nitroarene Reduction in Water. Catal. Commun. 2019, 119, 134–138.
  64. Shaker, M.A. Adsorption of Co (II), Ni (II) and Cu (II) Ions onto Chitosan-Modified Poly (Methacrylate) Nanoparticles: Dynamics, Equilibrium and Thermodynamics Studies. J. Taiwan Inst. Chem. Eng. 2015, 57, 111–122.
  65. Ain, Q.-U.; Farooq, M.U.; Jalees, M.I. Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection. J. Water Process Eng. 2020, 33, 101044.
  66. Song, J.; Kong, H.; Jang, J. Adsorption of Heavy Metal Ions from Aqueous Solution by Polyrhodanine-Encapsulated Magnetic Nanoparticles. J. Colloid Interface Sci. 2011, 359, 505–511.
  67. Nassar, N.N. Rapid Removal and Recovery of Pb (II) from Wastewater by Magnetic Nanoadsorbents. J. Hazard. Mater. 2010, 184, 538–546.
  68. Zhang, S.; Niu, H.; Cai, Y.; Zhao, X.; Shi, Y. Arsenite and Arsenate Adsorption on Coprecipitated Bimetal Oxide Magnetic Nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 2010, 158, 599–607.
  69. Kalantari, K.; Ahmad, M.B.; Fard Masoumi, H.R.; Shameli, K.; Basri, M.; Khandanlou, R. Rapid and High Capacity Adsorption of Heavy Metals by Fe3O4/Montmorillonite Nanocomposite Using Response Surface Methodology: Preparation, Characterization, Optimization, Equilibrium Isotherms, and Adsorption Kinetics Study. J. Taiwan Inst. Chem. Eng. 2015, 49, 192–198.
  70. Hao, Y.M.; Man, C.; Hu, Z.B. Effective Removal of Cu (II) Ions from Aqueous Solution by Amino-Functionalized Magnetic Nanoparticles. J. Hazard. Mater. 2010, 184, 392–399.
  71. Wang, J.; Zheng, S.; Shao, Y.; Liu, J.; Xu, Z.; Zhu, D. Amino-Functionalized Fe3O4@SiO2 Core–Shell Magnetic Nanomaterial as a Novel Adsorbent for Aqueous Heavy Metals Removal. J. Colloid Interface Sci. 2010, 349, 293–299.
  72. Ozmen, M.; Can, K.; Arslan, G.; Tor, A.; Cengeloglu, Y.; Ersoz, M. Adsorption of Cu (II) from Aqueous Solution by Using Modified Fe3O4 Magnetic Nanoparticles. Desalination 2010, 254, 162–169.
  73. Zhao, Y.G.; Shen, H.Y.; Pan, S.D.; Hu, M.Q. Synthesis, Characterization and Properties of Ethylenediamine-Functionalized Fe3O4 Magnetic Polymers for Removal of Cr (VI) in Wastewater. J. Hazard. Mater. 2010, 182, 295–302.
  74. Chowdhury, S.R.; Yanful, E.K. Arsenic and Chromium Removal by Mixed Magnetite-Maghemite Nanoparticles and the Effect of Phosphate on Removal. J. Env. Manag. 2010, 91, 2238–2247.
  75. Tran, H.V.; Tran, L.D.; Nguyen, T.N. Preparation of Chitosan/Magnetite Composite Beads and Their Application for Removal of Pb(II) and Ni(II) from Aqueous Solution. Mater. Sci. Eng. C 2010, 30, 304–310.
  76. Hu, H.; Wang, Z.; Pan, L. Synthesis of Monodisperse Fe3O4@silica Core–Shell Microspheres and Their Application for Removal of Heavy Metal Ions from Water. J. Alloys Compd. 2010, 492, 656–661.
  77. Sharma, Y.C.; Srivastava, V. Separation of Ni (II) Ions from Aqueous Solutions by Magnetic Nanoparticles. J. Chem. Eng. Data 2010, 55, 1441–1442.
  78. Zhao, Y.G.; Shen, H.Y.; Pan, S.D.; Hu, M.Q.; Xia, Q.H. Preparation and Characterization of Amino-Functionalized Nano-Fe3O4 Magnetic Polymer Adsorbents for Removal of Chromium (VI) Ions. J. Mater. Sci. 2010, 45, 5291–5301.
  79. Amin, M.M.; Khodabakhshi, A. Removal of Cr (VI) From Simulated Electroplating. Environ. Eng. Manag. J. 2010, 9, 921–927.
  80. Chowdhury, S.R.; Yanful, E.K.; Pratt, A.R. Arsenic Removal from Aqueous Solutions by Mixed Magnetite-Maghemite Nanoparticles. Environ. Earth Sci. 2011, 64, 411–423.
  81. Mostafa, M.G.; Chen, Y.H.; Jean, J.S.; Liu, C.C.; Lee, Y.C. Kinetics and Mechanism of Arsenate Removal by Nanosized Iron Oxide-Coated Perlite. J. Hazard. Mater. 2011, 187, 89–95.
  82. Nguyen Thanh, D.; Singh, M.; Ulbrich, P.; Strnadova, N.; Štěpánek, F. Perlite Incorporating γ-Fe2O3 and α-MnO2 Nanomaterials: Preparation and Evaluation of a New Adsorbent for As (V) Removal. Sep. Purif. Technol. 2011, 82, 93–101.
  83. Hou, X.; Feng, J.; Liu, X.; Ren, Y.; Fan, Z.; Wei, T.; Meng, J.; Zhang, M. Synthesis of 3D Porous Ferromagnetic NiFe2O4 and Using as Novel Adsorbent to Treat Wastewater. J. Colloid Interface Sci. 2011, 362, 477–485.
  84. Xu, M.; Zhang, Y.; Zhang, Z.; Shen, Y.; Zhao, M.; Pan, G. Study on the Adsorption of Ca2+, Cd2+ and Pb2+ by Magnetic Fe3O4 Yeast Treated with EDTA Dianhydride. Chem. Eng. J. 2011, 168, 737–745.
  85. Luo, X.; Luo, S.; Zhan, Y.; Shu, H.; Huang, Y.; Tu, X. Novel Cu (II) Magnetic Ion Imprinted Materials Prepared by Surface Imprinted Technique Combined with a Sol–Gel Process. J. Hazard. Mater. 2011, 192, 949–955.
  86. Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic Nanoparticle (Fe3O4) Impregnated onto Tea Waste for the Removal of Nickel (II) from Aqueous Solution. J. Hazard. Mater. 2011, 186, 160–168.
  87. Pang, Y.; Zeng, G.; Tang, L.; Zhang, Y.; Liu, Y.; Lei, X.; Li, Z.; Zhang, J.; Liu, Z.; Xiong, Y. Preparation and Application of Stability Enhanced Magnetic Nanoparticles for Rapid Removal of Cr (VI). Chem. Eng. J. 2011, 175, 222–227.
  88. Bhaumik, M.; Maity, A.; Srinivasu, V.V.; Onyango, M.S. Enhanced Removal of Cr (VI) from Aqueous Solution Using Polypyrrole/Fe3O4 Magnetic Nanocomposite. J. Hazard. Mater. 2011, 190, 381–390.
  89. Phuengprasop, T.; Sittiwong, J.; Unob, F. Removal of Heavy Metal Ions by Iron Oxide Coated Sewage Sludge. J. Hazard. Mater. 2011, 186, 502–507.
  90. Li, G.; Zhao, Z.; Liu, J.; Jiang, G. Effective Heavy Metal Removal from Aqueous Systems by Thiol Functionalized Magnetic Mesoporous Silica. J. Hazard. Mater. 2011, 192, 277–283.
  91. Sun, L.; Li, Y.; Sun, M.; Wang, H.; Xu, S.; Zhang, C.; Yang, Q. Porphyrin-Functionalized Fe3O4@SiO2 Core/Shell Magnetic Colorimetric Material for Detection, Adsorption and Removal of Hg2+ in Aqueous Solution. New J. Chem. 2011, 35, 2697–2704.
  92. Hu, J.; Yang, S.; Wang, X. Adsorption of Cu (II) on β-Cyclodextrin Modified Multiwall Carbon Nanotube/Iron Oxides in the Absence/Presence of Fulvic Acid. J. Chem. Technol. Biotechnol. 2012, 87, 673–681.
  93. Paulino, A.T.; Belfiore, L.A.; Kubota, L.T.; Muniz, E.C.; Almeida, V.C.; Tambourgi, E.B. Effect of Magnetite on the Adsorption Behavior of Pb (II), Cd (II), and Cu (II) in Chitosan-Based Hydrogels. Desalination 2011, 275, 187–196.
  94. Gupta, V.K.; Agarwal, S.; Saleh, T.A. Chromium Removal by Combining the Magnetic Properties of Iron Oxide with Adsorption Properties of Carbon Nanotubes. Water Res. 2011, 45, 2207–2212.
  95. Wang, X.S.; Zhu, L.; Lu, H.J. Surface Chemical Properties and Adsorption of Cu (II) on Nanoscale Magnetite in Aqueous Solutions. Desalination 2011, 276, 154–160.
  96. Pang, Y.; Zeng, G.; Tang, L.; Zhang, Y.; Liu, Y.; Lei, X.; Li, Z.; Zhang, J.; Xie, G. PEI-Grafted Magnetic Porous Powder for Highly Effective Adsorption of Heavy Metal Ions. Desalination 2011, 281, 278–284.
  97. Chen, R.; Zhi, C.; Yang, H.; Bando, Y.; Zhang, Z.; Sugiur, N.; Golberg, D. Arsenic (V) Adsorption on Fe3O4 Nanoparticle-Coated Boron Nitride Nanotubes. J. Colloid Interface Sci. 2011, 359, 261–268.
  98. Gong, J.; Wang, X.; Shao, X.; Yuan, S.; Yang, C.; Hu, X. Adsorption of Heavy Metal Ions by Hierarchically Structured Magnetite-Carbonaceous Spheres. Talanta 2012, 101, 45–52.
  99. Gong, J.L.; Wang, X.Y.; Zeng, G.M.; Chen, L.; Deng, J.H.; Zhang, X.R.; Niu, Q.Y. Copper (II) Removal by Pectin-Iron Oxide Magnetic Nanocomposite Adsorbent. Chem. Eng. J. 2012, 185–186, 100–107.
  100. Wu, Y.W.; Zhang, J.; Liu, J.F.; Chen, L.; Deng, Z.L.; Han, M.X.; Wei, X.S.; Yu, A.M.; Zhang, H.L. Fe3O4 @ZrO2 Nanoparticles Magnetic Solid Phase Extraction Coupled with Flame Atomic Absorption Spectrometry for Chromium (III) Speciation in Environmental and Biological Samples. Appl. Surf. Sci. 2012, 258, 6772–6776.
  101. Xu, P.; Zeng, G.M.; Huang, D.L.; Lai, C.; Zhao, M.H.; Wei, Z.; Li, N.J.; Huang, C.; Xie, G.X. Adsorption of Pb (II) by Iron Oxide Nanoparticles Immobilized Phanerochaete Chrysosporium: Equilibrium, Kinetic, Thermodynamic and Mechanisms Analysis. Chem. Eng. J. 2012, 203, 423–431.
  102. Xin, X.; Wei, Q.; Yang, J.; Yan, L.; Feng, R.; Chen, G.; Du, B.; Li, H. Highly Efficient Removal of Heavy Metal Ions by Amine-Functionalized Mesoporous Fe3O4 Nanoparticles. Chem. Eng. J. 2012, 184, 132–140.
  103. Ge, F.; Li, M.M.; Ye, H.; Zhao, B.X. Effective Removal of Heavy Metal Ions Cd2+, Zn2+, Pb2+, Cu2+ from Aqueous Solution by Polymer-Modified Magnetic Nanoparticles. J. Hazard. Mater. 2012, 211–212, 366–372.
  104. Zhang, F.; Lan, J.; Zhao, Z.; Yang, Y.; Tan, R.; Song, W. Removal of Heavy Metal Ions from Aqueous Solution Using Fe3O4–SiO2-Poly(1,2-Diaminobenzene) Core–Shell Sub-Micron Particles. J. Colloid Interface Sci. 2012, 387, 205–212.
  105. Feng, L.; Cao, M.; Ma, X.; Zhu, Y.; Hu, C. Superparamagnetic High-Surface-Area Fe3O4 Nanoparticles as Adsorbents for Arsenic Removal. J. Hazard. Mater. 2012, 217–218, 439–446.
  106. Ngomsik, A.F.; Bee, A.; Talbot, D.; Cote, G. Magnetic Solid–Liquid Extraction of Eu (III), La (III), Ni (II) and Co (II) with Maghemite Nanoparticles. Sep. Purif. Technol. 2012, 86, 1–8.
  107. Jin, Y.; Liu, F.; Tong, M.; Hou, Y. Removal of Arsenate by Cetyltrimethylammonium Bromide Modified Magnetic Nanoparticles. J. Hazard. Mater. 2012, 227–228, 461–468.
  108. Larraza, I.; López-Gónzalez, M.; Corrales, T.; Marcelo, G. Hybrid Materials: Magnetite–Polyethylenimine–Montmorillonite, as Magnetic Adsorbents for Cr (VI) Water Treatment. J. Colloid Interface Sci. 2012, 385, 24–33.
  109. Zhang, C.; Sui, J.; Li, J.; Tang, Y.; Cai, W. Efficient Removal of Heavy Metal Ions by Thiol-Functionalized Superparamagnetic Carbon Nanotubes. Chem. Eng. J. 2012, 210, 45–52.
  110. Bhunia, P.; Kim, G.; Baik, C.; Lee, H. A Strategically Designed Porous Iron–Iron Oxide Matrix on Graphene for Heavy Metal Adsorption. Chem. Commun. 2012, 48, 9888–9890.
  111. Cho, D.W.; Jeon, B.H.; Chon, C.M.; Kim, Y.; Schwartz, F.W.; Lee, E.S.; Song, H. A Novel Chitosan/Clay/Magnetite Composite for Adsorption of Cu (II) and As (V). Chem. Eng. J. 2012, 200–202, 654–662.
  112. Wang, L.; Li, J.; Jiang, Q.; Zhao, L. Water-Soluble Fe3O4 Nanoparticles with High Solubility for Removal of Heavy-Metal Ions from Waste Water. Dalt. Trans. 2012, 41, 4544–4551.
  113. Hakami, O.; Zhang, Y.; Banks, C.J. Thiol-Functionalised Mesoporous Silica-Coated Magnetite Nanoparticles for High Efficiency Removal and Recovery of Hg from Water. Water Res. 2012, 46, 3913–3922.
  114. Parham, H.; Zargar, B.; Shiralipour, R. Fast and Efficient Removal of Mercury from Water Samples Using Magnetic Iron Oxide Nanoparticles Modified with 2-Mercaptobenzothiazole. J. Hazard. Mater. 2012, 205–206, 94–100.
  115. Luo, X.; Wang, C.; Luo, S.; Dong, R.; Tu, X.; Zeng, G. Adsorption of As(III) and As (V) from Water Using Magnetite Fe3O4-Reduced Graphite Oxide–MnO2 Nanocomposites. Chem. Eng. J. 2012, 187, 45–52.
  116. Ji, L.; Zhou, L.; Bai, X.; Shao, Y.; Zhao, G.; Qu, Y.; Wang, C.; Li, Y. Facile Synthesis of Multiwall Carbon Nanotubes/Iron Oxides for Removal of Tetrabromobisphenol A and Pb (II). J. Mater. Chem. 2012, 22, 15853–15862.
  117. Roy, A.; Bhattacharya, J. Removal of Cu (II), Zn (II) and Pb (II) from Water Using Microwave-Assisted Synthesized Maghemite Nanotubes. Chem. Eng. J. 2012, 211–212, 493–500.
  118. Zhang, S.; Zhou, Y.F.; Nie, W.Y.; Song, L.Y. Preparation of Fe3O4/Chitosan/Poly(Acrylic Acid) Composite Particles and Its Application in Adsorbing Copper Ion (II). Cellulose 2012, 19, 2081–2091.
  119. Mahdavi, M.; Ahmad, M.B.; Haron, M.J.; Gharayebi, Y.; Shameli, K.; Nadi, B. Fabrication and Characterization of SiO2/(3-Aminopropyl)Triethoxysilane-Coated Magnetite Nanoparticles for Lead(II) Removal from Aqueous Solution. J. Inorg. Organomet. Polym. Mater. 2013, 23, 599–607.
  120. Mahapatra, A.; Mishra, B.G.; Hota, G. Electrospun Fe2O3-Al2O3 Nanocomposite Fibers as Efficient Adsorbent for Removal of Heavy Metal Ions from Aqueous Solution. J. Hazard. Mater. 2013, 258–259, 116–123.
  121. Ahmed, M.A.; Ali, S.M.; El-Dek, S.I.; Galal, A. Magnetite–Hematite Nanoparticles Prepared by Green Methods for Heavy Metal Ions Removal from Water. Mater. Sci. Eng. B 2013, 178, 744–751.
  122. Xiao, Y.; Liang, H.; Chen, W.; Wang, Z. Synthesis and Adsorption Behavior of Chitosan-Coated MnFe2O4 Nanoparticles for Trace Heavy Metal Ions Removal. Appl. Surf. Sci. 2013, 285, 498–504.
  123. Chang, J.; Zhong, Z.; Xu, H.; Yao, Z.; Chen, R. Fabrication of Poly (γ-Glutamic Acid)-Coated Fe3O4 Magnetic Nanoparticles and Their Application in Heavy Metal Removal. Chinese J. Chem. Eng. 2013, 21, 1244–1250.
  124. Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Tay, W.J.D.; Hidajat, K.; Uddin, M.S. Fe3O4/Cyclodextrin Polymer Nanocomposites for Selective Heavy Metals Removal from Industrial Wastewater. Carbohydr. Polym. 2013, 91, 322–332.
  125. Liang, H.; Xu, B.; Wang, Z. Self-Assembled 3D Flower-like α-Fe2O3 Microstructures and Their Superior Capability for Heavy Metal Ion Removal. Mater. Chem. Phys. 2013, 141, 727–734.
  126. Karami, H. Heavy Metal Removal from Water by Magnetite Nanorods. Chem. Eng. J. 2013, 219, 209–216.
  127. Ren, Y.; Abbood, H.A.; He, F.; Peng, H.; Huang, K. Magnetic EDTA-Modified Chitosan/SiO2/Fe3O4 Adsorbent: Preparation, Characterization, and Application in Heavy Metal Adsorption. Chem. Eng. J. 2013, 226, 300–311.
  128. Tang, Y.; Liang, S.; Wang, J.; Yu, S.; Wang, Y. Amino-Functionalized Core-Shell Magnetic Mesoporous Composite Microspheres for Pb (II) and Cd (II) Removal. J. Environ. Sci. 2013, 25, 830–837.
  129. Liu, M.; Wen, T.; Wu, X.; Chen, C.; Hu, J.; Li, J.; Wang, X. Synthesis of Porous Fe3O4 Hollow Microspheres/ Graphene Oxide Composite for Cr(vi) Removal. Dalt. Trans. 2013, 42, 14710–14717.
  130. Wei, Z.; Xing, R.; Zhang, X.; Liu, S.; Yu, H.; Li, P. Facile Template-Free Fabrication of Hollow Nestlike α-Fe2O3 Nanostructures for Water Treatment. ACS Appl. Mater. Interfaces 2013, 5, 598–604.
  131. Ren, T.; He, P.; Niu, W.; Wu, Y.; Ai, L.; Gou, X. Synthesis of α-Fe2O3 Nanofibers for Applications in Removal and Recovery of Cr (VI) from Wastewater. Env. Sci. Pollut. Res. 2013, 20, 155–162.
  132. Zhang, J.; Zhai, S.; Li, S.; Xiao, Z.; Song, Y.; An, Q.; Tian, G. Pb (II) Removal of Fe3O4@SiO2–NH2 Core–Shell Nanomaterials Prepared via a Controllable Sol–Gel Process. Chem. Eng. J. 2013, 215–216, 461–471.
  133. Burks, T.; Uheida, A.; Saleemi, M.; Eita, M.; Toprak, M.S.; Muhammed, M. Removal of Chromium (VI) Using Surface Modified Superparamagnetic Iron Oxide Nanoparticles. Sep. Sci. Technol. 2013, 48, 1243–1251.
  134. Zhao, L.; Chang, X.L.; Liao, R.; Zhang, X.; Xie, J.; Yu, B.; Wu, R.; Wang, R.; Yang, S.T. Facile Hydrothermal Preparation of S-Doped Fe3O4@C Nanoparticles for Cu2+ Removal. Mater. Lett. 2014, 135, 154–157.
  135. Xu, Y.; Zhou, Y.; Li, R. Simultaneous Fluorescence Response and Adsorption of Functionalized Fe3O4@SiO2 Nanoparticles to Cd2+, Zn2+ and Cu2+. Colloids Surf. A Physicochem. Eng. Asp. 2014, 459, 240–246.
  136. Feitoza, N.C.; Gonçalves, T.D.; Mesquita, J.J.; Menegucci, J.S.; Santos, M.K.M.S.; Chaker, J.A.; Cunha, R.B.; Medeiros, A.M.M.; Rubim, J.C.; Sousa, M.H. Fabrication of Glycine-Functionalized Maghemite Nanoparticles for Magnetic Removal of Copper from Wastewater. J. Hazard. Mater. 2014, 264, 153–160.
  137. Ahmadi, A.; Heidarzadeh, S.; Mokhtari, A.R.; Darezereshki, E.; Harouni, H.A. Optimization of Heavy Metal Removal from Aqueous Solutions by Maghemite (γ-Fe2O3) Nanoparticles Using Response Surface Methodology. J. Geochem. Explor. 2014, 147, 151–158.
  138. Hao, T.; Yang, C.; Rao, X.; Wang, J.; Niu, C.; Su, X. Facile Additive-Free Synthesis of Iron Oxide Nanoparticles for Efficient Adsorptive Removal of Congo Red and Cr (VI). Appl. Surf. Sci. 2014, 292, 174–180.
  139. Burks, T.; Avila, M.; Akhtar, F.; Göthelid, M.; Lansåker, P.C.; Toprak, M.S.; Muhammed, M.; Uheida, A. Studies on the Adsorption of Chromium (VI) onto 3-Mercaptopropionic Acid Coated Superparamagnetic Iron Oxide Nanoparticles. J. Colloid Interface Sci. 2014, 425, 36–43.
  140. Fang, X.B.; Fang, Z.Q.; Tsang, P.K.E.; Cheng, W.; Yan, X.M.; Zheng, L.C. Selective Adsorption of Cr (VI) from Aqueous Solution by EDA-Fe3O4 Nanoparticles Prepared from Steel Pickling Waste Liquor. Appl. Surf. Sci. 2014, 314, 655–662.
  141. Türk, T.; Alp, I. Arsenic Removal from Aqueous Solutions with Fe-Hydrotalcite Supported Magnetite Nanoparticle. J. Ind. Eng. Chem. 2014, 20, 732–738.
  142. Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of Amino Functionalized Magnetic Graphenes Composite Material and Its Application to Remove Cr (VI), Pb (II), Hg (II), Cd (II) and Ni (II) from Contaminated Water. J. Hazard. Mater. 2014, 278, 211–220.
  143. Lan, S.; Leng, Z.; Guo, N.; Wu, X.; Gan, S. Sesbania Gum-Based Magnetic Carbonaceous Nanocomposites: Facile Fabrication and Adsorption Behavior. Colloids Surf. A Physicochem. Eng. Asp. 2014, 446, 163–171.
  144. Zhou, L.; Ji, L.; Ma, P.C.; Shao, Y.; Zhang, H.; Gao, W.; Li, Y. Development of Carbon Nanotubes/CoFe2O4 Magnetic Hybrid Material for Removal of Tetrabromobisphenol A and Pb (II). J. Hazard. Mater. 2014, 265, 104–114.
  145. Kalantari, K.; Ahmad, M.B.; Masoumi, H.R.F.; Shameli, K.; Basri, M.; Khandanlou, R. Rapid Adsorption of Heavy Metals by Fe3O4/Talc Nanocomposite and Optimization Study Using Response Surface Methodology. Int. J. Mol. Sci. 2014, 15, 12913–12927.
  146. Lasheen, M.R.; El-Sherif, I.Y.; Sabry, D.Y.; El-Wakeel, S.T.; El-Shahat, M.F. Removal and Recovery of Cr (VI) by Magnetite Nanoparticles. Desalin. Water Treat. 2014, 52, 6464–6473.
  147. Zhang, Y.; Yan, L.; Xu, W.; Guo, X.; Cui, L.; Gao, L.; Wei, Q.; Du, B. Adsorption of Pb (II) and Hg (II) from Aqueous Solution Using Magnetic CoFe2O4-Reduced Graphene Oxide. J. Mol. Liq. 2014, 191, 177–182.
  148. Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene Oxide-MnFe2O4 Magnetic Nanohybrids for Efficient Removal of Lead and Arsenic from Water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436.
  149. Qi, X.; Li, N.; Xu, Q.; Chen, D.; Li, H.; Lu, J. Water-Soluble Fe3O4 Superparamagnetic Nanocomposites for the Removal of Low Concentration Mercury (II) Ions from Water. RSC Adv. 2014, 4, 47643–47648.
  150. Chen, Z.; Geng, Z.; Zhang, Z.; Ren, L.; Tao, T.; Yang, R.; Guo, Z. Synthesis of Magnetic Fe3O4@C Nanoparticles Modified with -SO3H and -COOH Groups for Fast Removal of Pb2+, Hg2+, and Cd2+ Ions. Eur. J. Inorg. Chem. 2015, 2014, 3172–3177.
  151. Peng, X.; Xu, F.; Zhang, W.; Wang, J.; Zeng, C.; Niu, M.; Chmielewská, E. Magnetic Fe3O4 @ Silica–Xanthan Gum Composites for Aqueous Removal and Recovery of Pb2+. Colloids Surf. A Physicochem. Eng. Asp. 2014, 443, 27–36.
  152. Singh, D.; Verma, S.; Gautam, R.K.; Krishna, V. Copper Adsorption onto Synthesized Nitrilotriacetic Acid Functionalized Fe3O4 Nanoparticles: Kinetic, Equilibrium and Thermodynamic Studies. J. Environ. Chem. Eng. 2016, 3, 2161–2171.
  153. Luo, X.; Zeng, J.; Liu, S.; Zhang, L. An Effective and Recyclable Adsorbent for the Removal of Heavy Metal Ions from Aqueous System: Magnetic Chitosan/Cellulose Microspheres. Bioresour. Technol. 2015, 194, 403–406.
  154. Culita, D.C.; Simonescu, C.M.; Dragne, M.; Stanica, N.; Munteanu, C.; Preda, S.; Oprea, O. Effect of Surfactant Concentration on Textural, Morphological and Magnetic Properties of CoFe2O4 Nanoparticles and Evaluation of Their Adsorptive Capacity for Pb (II) Ions. Ceram. Int. 2015, 41, 13553–13560.
  155. Madrakian, T.; Afkhami, A.; Zadpour, B.; Ahmadi, M. New Synthetic Mercaptoethylamino Homopolymer-Modified Maghemite Nanoparticles for Effective Removal of Some Heavy Metal Ions from Aqueous Solution. J. Ind. Eng. Chem. 2015, 21, 1160–1166.
  156. Tadjarodi, A.; Abbaszadeh, A.; Taghizadeh, M.; Shekari, N.; Asgharinezhad, A.A. Solid Phase Extraction of Cd (II) and Pb (II) Ions Based on a Novel Functionalized Fe3O4@SiO2 Core-Shell Nanoparticles with the Aid of Multivariate Optimization Methodology. Mater. Sci. Eng. C. 2015, 49, 416–421.
  157. Gautam, R.K.; Gautam, P.K.; Banerjee, S.; Soni, S.; Singh, S.K.; Chattopadhyaya, M.C. Removal of Ni (II) by Magnetic Nanoparticles. J. Mol. Liq. 2015, 204, 60–69.
  158. Souda, P.; Sreejith, L. Magnetic Hydrogel for Better Adsorption of Heavy Metals from Aqueous Solutions. J. Environ. Chem. Eng. 2015, 3, 1882–1891.
  159. Kumari, M.; Pittman, C.U.; Mohan, D. Heavy Metals Removal from Water Using Mesoporous Magnetite (Fe3O4) Nanospheres. J. Colloid Interface Sci. 2015, 442, 120–132.
  160. Morillo, D.; Uheida, A.; Pérez, G.; Muhammed, M.; Valiente, M. Arsenate Removal with 3-Mercaptopropanoic Acid-Coated Superparamagnetic Iron Oxide Nanoparticles. J. Colloid Interface Sci. 2015, 438, 227–234.
  161. Shan, C.; Ma, Z.; Tong, M. Efficient Removal of Free and Nitrilotriacetic Acid Complexed Cd (II) from Water by Poly(1-Vinylimidazole)-Grafted Fe3O4@SiO2 Magnetic Nanoparticles. J. Hazard. Mater. 2015, 299, 479–485.
  162. Chávez-Guajardo, A.E.; Medina-Llamas, J.C.; Maqueira, L.; Andrade, C.A.S.; Alves, K.G.B.; de Melo, C.P. Efficient Removal of Cr (VI) and Cu (II) Ions from Aqueous Media by Use of Polypyrrole/Maghemite and Polyaniline/Maghemite Magnetic Nanocomposites. Chem. Eng. J. 2015, 281, 826–836.
  163. Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA Functionalized Magnetic Graphene Oxide for Removal of Pb (II), Hg (II) and Cu (II) in Water Treatment: Adsorption Mechanism and Separation Property. Chem. Eng. J. 2015, 281, 1–10.
  164. Moradinasab, S.; Behzad, M. Removal of Heavy Metals from Aqueous Solution Using Fe3O4 Nanoparticles Coated with Schiff Base Ligand. Desalin. Water Treat. 2016, 57, 4028–4036.
  165. Mittal, A.; Ahmad, R.; Hasan, I. Poly (Methyl Methacrylate)-Grafted Alginate/Fe3O4 Nanocomposite: Synthesis and Its Application for the Removal of Heavy Metal Ions. Desalin. Water Treat. 2016, 57, 19820–19833.
  166. Zhang, X.; Wu, T.; Zhang, Y.; Ng, D.H.L.; Zhao, H.; Wang, G. Adsorption of Hg2+ by Thiol Functionalized Hollow Mesoporous Silica Microspheres with Magnetic Cores. RSC Adv. 2015, 5, 51446–51453.
  167. Wang, H.; Yuan, X.; Wu, Y.; Chen, X.; Leng, L.; Wang, H.; Li, H.; Zeng, G. Facile Synthesis of Polypyrrole Decorated Reduced Graphene Oxide–Fe3O4 Magnetic Composites and Its Application for the Cr (VI) Removal. Chem. Eng. J. 2015, 262, 597–606.
  168. Duan, S.; Tang, R.; Xue, Z.; Zhang, X.; Zhao, Y.; Zhang, W.; Zhang, J.; Wang, B.; Zeng, S.; Sun, D. Effective Removal of Pb (II) Using Magnetic Co0.6Fe2.4O4 Micro-Particles as the Adsorbent: Synthesis and Study on the Kinetic and Thermodynamic Behaviors for Its Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2015, 469, 211–223.
  169. Shan, R.R.; Yan, L.G.; Yang, K.; Hao, Y.F.; Du, B. Adsorption of Cd (II) by Mg–Al–CO3- and Magnetic Fe3O4/Mg–Al–CO3-Layered Double Hydroxides: Kinetic, Isothermal, Thermodynamic and Mechanistic Studies. J. Hazard. Mater 2015, 299, 42–49.
  170. Lasheen, M.R.; El-Sherif, I.Y.; Tawfik, M.E.; El-Wakeel, S.T.; El-Shahat, M.F. Preparation and Adsorption Properties of Nano Magnetite Chitosan Films for Heavy Metal Ions from Aqueous Solution. Mater. Res. Bull. 2016, 80, 344–350.
  171. Bao, S.; Tang, L.; Li, K.; Ning, P.; Peng, J.; Guo, H.; Zhu, T.; Liu, Y. Highly Selective Removal of Zn (II) Ion from Hot-Dip Galvanizing Pickling Waste with Amino-Functionalized Fe3O4@SiO2 Magnetic Nano-Adsorbent. J. Colloid Interface Sci. 2016, 462, 235–242.
  172. Tamez, C.; Hernandez, R.; Parsons, J.G. Removal of Cu (II) and Pb (II) from Aqueous Solution Using Engineered Iron Oxide Nanoparticles. Microchem. J. 2016, 125, 97–104.
  173. Babu, C.M.; Vinodh, R.; Sundaravel, B.; Abidov, A.; Peng, M.M.; Cha, W.S.; Jang, H.T. Characterization of Reduced Graphene Oxide Supported Mesoporous Fe2O3/TiO2 Nanoparticles and Adsorption of As (III) and As (V) from Potable Water. J. Taiwan Inst. Chem. Eng. 2016, 62, 199–208.
  174. Wang, Z.; Xu, J.; Hu, Y.; Zhao, H.; Zhou, J.; Liu, Y.; Lou, Z.; Xu, X. Functional Nanomaterials: Study on Aqueous Hg (II) Adsorption by Magnetic Fe3O4@SiO2-SH Nanoparticles. J. Taiwan Inst. Chem. Eng. 2016, 60, 394–402.
  175. Singh, D.; Singh, S.K.; Atar, N.; Krishna, V. Amino Acid Functionalized Magnetic Nanoparticles for Removal of Ni (II) from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2016, 67, 148–160.
  176. Davarnejad, R.; Panahi, P. Cu (II) Removal from Aqueous Wastewaters by Adsorption on the Modified Henna with Fe3O4 Nanoparticles Using Response Surface Methodology. Sep. Purif. Technol. 2016, 158, 286–292.
  177. Yan, L.; Li, S.; Yu, H.; Shan, R.; Du, B.; Liu, T. Facile Solvothermal Synthesis of Fe3O4/Bentonite for Efficient Removal of Heavy Metals from Aqueous Solution. Powder Technol. 2016, 301, 632–640.
  178. Bagbi, Y.; Sarswat, A.; Mohan, D.; Pandey, A.; Solanki, P.R. Lead (Pb2+) Adsorption by Monodispersed Magnetite Nanoparticles: Surface Analysis and Effects of Solution Chemistry. J. Environ. Chem. Eng. 2016, 4, 4237–4247.
  179. Rajput, S.; Pittman, C.U.; Mohan, D. Magnetic Magnetite (Fe3O4) Nanoparticle Synthesis and Applications for Lead (Pb2+) and Chromium (Cr6+) Removal from Water. J. Colloid Interface Sci. 2016, 468, 334–346.
  180. Zhu, X.; Song, T.; Lv, Z.; Ji, G. High-Efficiency and Low-Cost α-Fe2O3 Nanoparticles-Coated Volcanic Rock for Cd (II) Removal from Wastewater. Process. Saf. Environ. Prot. 2016, 104, 373–381.
  181. Danesh, N.; Hosseini, M.; Ghorbani, M.; Marjani, A. Fabrication, Characterization and Physical Properties of a Novel Magnetite Graphene Oxide/Lauric Acid Nanoparticles Modified by Ethylenediaminetetraacetic Acid and Its Applications as an Adsorbent for the Removal of Pb (II) Ions. Synth. Met. 2016, 220, 508–523.
  182. Gao, J.; He, Y.; Zhao, X.; Ran, X.; Wu, Y.; Su, Y.; Dai, J. Single Step Synthesis of Amine-Functionalized Mesoporous Magnetite Nanoparticles and Their Application for Copper Ions Removal from Aqueous Solution. J. Colloid Interface Sci. 2016, 481, 220–228.
  183. Habila, M.A.; Alothman, Z.A.; El-Toni, A.M.; Labis, J.P.; Soylak, M. Synthesis and Application of Fe3O4@SiO2@TiO2 for Photocatalytic Decomposition of Organic Matrix Simultaneously with Magnetic Solid Phase Extraction of Heavy Metals Prior to ICP-MS Analysis. Talanta 2016, 154, 539–547.
  184. Khandanlou, R.; Fard Masoumi, H.R.; Ahmad, M.B.; Shameli, K.; Basri, M.; Kalantari, K. Enhancement of Heavy Metals Sorption via Nanocomposites of Rice Straw and Fe3O4 Nanoparticles Using Artificial Neural Network (ANN). Ecol. Eng. 2016, 91, 249–256.
  185. Fan, H.L.; Li, L.; Zhou, S.F.; Liu, Y.Z. Continuous Preparation of Fe3O4 Nanoparticles Combined with Surface Modification by L-Cysteine and Their Application in Heavy Metal Adsorption. Ceram. Int. 2016, 42, 4228–4237.
  186. Mahmoud, M.E.; Amira, M.F.; Zaghloul, A.A.; Ibrahim, G.A.A. High Performance Microwave-Enforced Solid Phase Extraction of Heavy Metals from Aqueous Solutions Using Magnetic Iron Oxide Nanoparticles-Protected-Nanosilica. Sep. Purif. Technol. 2016, 163, 169–172.
  187. Mukherjee, D.; Ghosh, S.; Majumdar, S.; Annapurna, K. Green Synthesis of α-Fe2O3 Nanoparticles for Arsenic (V) Remediation with a Novel Aspect for Sludge Management. J. Environ. Chem. Eng. 2016, 4, 639–650.
  188. Zhao, J.; Liu, J.; Li, N.; Wang, W.; Nan, J.; Zhao, Z.; Cui, F. Highly Efficient Removal of Bivalent Heavy Metals from Aqueous Systems by Magnetic Porous Fe3O4-MnO2: Adsorption Behavior and Process Study. Chem. Eng. J. 2016, 304, 737–746.
  189. Liu, Y.; Fu, R.; Sun, Y.; Zhou, X.; Baig, S.A.; Xu, X. Multifunctional Nanocomposites Fe3O4@SiO2-EDTA for Pb (II) and Cu (II) Removal from Aqueous Solutions. Appl. Surf. Sci. 2016, 369, 267–276.
  190. Shen, W.; Mu, Y.; Xiao, T.; Ai, Z. Magnetic Fe3O4–FeB Nanocomposites with Promoted Cr (VI) Removal Performance. Chem. Eng. J. 2016, 285, 57–68.
  191. Beduk, F. Superparamagnetic Nanomaterial Fe3O4-TiO2 for the Removal of As (V) and As (III) from Aqueous Solutions. Env. Technol. 2016, 37, 1790–1801.
  192. Beheshti, H.; Irani, M.; Hosseini, L.; Rahimi, A.; Aliabadi, M. Removal of Cr (VI) from Aqueous Solutions Using Chitosan/MWCNT/Fe3O4 Composite Nanofibers-Batch and Column Studies. Chem. Eng. J. 2016, 284, 557–564.
  193. Zhao, D.; Gao, X.; Wu, C.; Xie, R.; Feng, S.; Chen, C. Facile Preparation of Amino Functionalized Graphene Oxide Decorated with Fe3O4 Nanoparticles for the Adsorption of Cr (VI). Appl. Surf. Sci. 2016, 384, 1–9.
  194. Ashrafi, A.; Rahbar-Kelishami, A.; Shayesteh, H. Highly Efficient Simultaneous Ultrasonic Assisted Adsorption of Pb (II) by Fe3O4@MnO2 Core-Shell Magnetic Nanoparticles: Synthesis and Characterization, Kinetic, Equilibrium, and Thermodynamic Studies. J. Mol. Struct. 2017, 1147, 40–47.
  195. Chen, K.; He, J.; Li, Y.; Cai, X.; Zhang, K.; Liu, T.; Hu, Y.; Lin, D.; Kong, L.; Liu, J. Removal of Cadmium and Lead Ions from Water by Sulfonated Magnetic Nanoparticle Adsorbents. J. Colloid Interface Sci. 2017, 494, 307–316.
  196. Hasanzadeh, R.; Moghadam, P.N.; Bahri-Laleh, N.; Sillanpää, M. Effective Removal of Toxic Metal Ions from Aqueous Solutions: 2-Bifunctional Magnetic Nanocomposite Base on Novel Reactive PGMA-MAn 3O4 Nanoparticles. J. Colloid Interface Sci. 2017, 490, 727–746.
  197. Elfeky, S.A.; Mahmoud, S.E.; Youssef, A.F. Applications of CTAB Modified Magnetic Nanoparticles for Removal of Chromium (VI) from Contaminated Water. J. Adv. Res. 2017, 8, 435–443.
  198. Ke, F.; Jiang, J.; Li, Y.; Liang, J.; Wan, X.; Ko, S. Highly Selective Removal of Hg2+ and Pb2+ by Thiol-Functionalized Fe3O4@metal-Organic Framework Core-Shell Magnetic Microspheres. Appl. Surf. Sci. 2017, 413, 266–274.
  199. Guo, S.; Jiao, P.; Dan, Z.; Duan, N.; Zhang, J.; Chen, G.; Gao, W. Synthesis of Magnetic Bioadsorbent for Adsorption of Zn (II), Cd (II) and Pb (II) Ions from Aqueous Solution. Chem. Eng. Res. Des. 2017, 126, 217–231.
  200. Jin, S.; Park, B.C.; Ham, W.S.; Pan, L.; Kim, Y.K. Effect of the Magnetic Core Size of Amino-Functionalized Fe3O4-Mesoporous SiO2 Core-Shell Nanoparticles on the Removal of Heavy Metal Ions. Colloids Surfaces A Physicochem. Eng. Asp. 2017, 531, 133–140.
  201. Ahmadi, M.; Hazrati Niari, M.; Kakavandi, B. Development of Maghemite Nanoparticles Supported on Cross-Linked Chitosan (γ-Fe2O3@CS) as a Recoverable Mesoporous Magnetic Composite for Effective Heavy Metals Removal. J. Mol. Liq. 2017, 248, 184–196.
  202. Bagbi, Y.; Sarswat, A.; Mohan, D.; Pandey, A.; Solanki, P.R. Lead and Chromium Adsorption from Water Using L-Cysteine Functionalized Magnetite (Fe3O4) Nanoparticles. Sci. Rep. 2017, 7, 1–15.
  203. Jiryaei Sharahi, F.; Shahbazi, A. Melamine-Based Dendrimer Amine-Modified Magnetic Nanoparticles as an Efficient Pb (II) Adsorbent for Wastewater Treatment: Adsorption Optimization by Response Surface Methodology. Chemosphere 2017, 189, 291–300.
  204. Sun, T.; Zhao, Z.; Liang, Z.; Liu, J.; Shi, W.; Cui, F. Efficient Removal of Arsenite through Photocatalytic Oxidation and Adsorption by ZrO2-Fe3O4 Magnetic Nanoparticles. Appl. Surf. Sci. 2017, 416, 656–665.
  205. Wang, F.; Zhang, L.; Wang, Y.; Liu, X.; Rohani, S.; Lu, J. Fe3O4@SiO2@CS-TETA Functionalized Graphene Oxide for the Adsorption of Methylene Blue (MB) and Cu (II). Appl. Surf. Sci. 2017, 420, 970–981.
  206. Zhu, H.; Shen, Y.; Wang, Q.; Chen, K.; Wang, X.; Zhang, G.; Yang, J.; Guo, Y.; Bai, R. Highly Promoted Removal of Hg (II) with Magnetic CoFe2O4@SiO2 Core-Shell Nanoparticles Modified by Thiol Groups. RSC Adv. 2017, 7, 39204–39215.
  207. Zou, Z.; Shi, Z.; Deng, L. Highly Efficient Removal of Cu (II) from Aqueous Solution Using a Novel Magnetic EDTA Functionalized CoFe2O4. RSC Adv. 2017, 7, 5195–5205.
  208. Lalhmunsiama; Pawar, R.R.; Hong, S.M.; Jin, K.J.; Lee, S.M. Iron-Oxide Modified Sericite Alginate Beads: A Sustainable Adsorbent for the Removal of As (V) and Pb (II) from Aqueous Solutions. J. Mol. Liq. 2017, 240, 497–503.
  209. Ren, C.; Ding, X.; Fu, H.; Li, W.; Wu, H.; Yang, H. Core-Shell Superparamagnetic Monodisperse Nanospheres Based on Amino-Functionalized CoFe2O4@SiO2 for Removal of Heavy Metals from Aqueous Solutions. RSC Adv. 2017, 7, 6911–6921.
  210. Fan, C.; Li, K.; Li, J.; Ying, D.; Wang, Y.; Jia, J. Comparative and Competitive Adsorption of Pb (II) and Cu (II) Using Tetraethylenepentamine Modified Chitosan/CoFe2O4 Particles. J. Hazard. Mater. 2017, 326, 211–220.
  211. Nithya, K.; Sathish, A.; Senthil Kumar, P.; Ramachandran, T. Fast Kinetics and High Adsorption Capacity of Green Extract Capped Superparamagnetic Iron Oxide Nanoparticles for the Adsorption of Ni (II) Ions. J. Ind. Eng. Chem. 2018, 59, 230–241.
  212. Silva-Yumi, J.; Escudey, M.; Gacitua, M.; Pizarro, C. Kinetics, Adsorption and Desorption of Cd (II) and Cu (II) on Natural Allophane: Effect of Iron Oxide Coating. Geoderma 2018, 319, 70–79.
  213. Guo, T.; Bulin, C.; Li, B.; Zhao, Z.; Yu, H.; Sun, H.; Ge, X.; Xing, R.; Zhang, B. Efficient Removal of Aqueous Pb (II) Using Partially Reduced Graphene Oxide-Fe3O4. Adsorpt. Sci. Technol. 2018, 36, 1031–1048.
  214. Mirzaeinejad, M.; Mansoori, Y.; Amiri, M. Amino Functionalized ATRP-Prepared Polyacrylamide-g-Magnetite Nanoparticles for the Effective Removal of Cu (II) Ions: Kinetics Investigations. Mater. Chem. Phys. 2018, 205, 195–205.
  215. Sun, J.; Chen, Y.; Yu, H.; Yan, L.; Du, B.; Pei, Z. Removal of Cu2+, Cd2+ and Pb2+ from Aqueous Solutions by Magnetic Alginate Microsphere Based on Fe3O4/MgAl-Layered Double Hydroxide. J. Colloid Interface Sci. 2018, 532, 474–484.
  216. Xu, W.; Song, Y.; Dai, K.; Sun, S.; Liu, G.; Yao, J. Novel Ternary Nanohybrids of Tetraethylenepentamine and Graphene Oxide Decorated with MnFe2O4 Magnetic Nanoparticles for the Adsorption of Pb (II). J. Hazard. Mater. 2018, 358, 337–345.
  217. Wang, Y.Y.; Ji, H.Y.; Lu, H.H.; Liu, Y.X.; Yang, R.Q.; He, L.L.; Yang, S.M. Simultaneous Removal of Sb (III) and Cd (II) in Water by Adsorption onto a MnFe2O4-Biochar Nanocomposite. RSC Adv. 2018, 8, 3264–3273.
  218. Wang, X.; Zhang, Z.; Zhao, Y.; Xia, K.; Guo, Y.; Qu, Z.; Bai, R. A Mild and Facile Synthesis of Amino Functionalized CoFe2O4@SiO2 for Hg (II) Removal. Nanomaterials 2018, 8, 673.
  219. Song, T.; Yu, C.; He, X.; Lin, J.; Liu, Z.; Yang, X.; Zhang, Y.; Huang, Y.; Tang, C. Synthesis of Magnetically Separable Porous BN 3O4 Nanocomposites for Pb (II) Adsorption. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 537, 508–515.
  220. Koushkbaghi, S.; Zakialamdari, A.; Pishnamazi, M.; Ramandi, H.F.; Aliabadi, M.; Irani, M. Aminated-Fe3O4 Nanoparticles Filled Chitosan/PVA/PES Dual Layers Nanofibrous Membrane for the Removal of Cr (VI) and Pb (II) Ions from Aqueous Solutions in Adsorption and Membrane Processes. Chem. Eng. J. 2018, 337, 169–182.
  221. Fu, W.; Huang, Z. One-Pot Synthesis of a Two-Dimensional Porous Fe3O4/Poly(C3N3S3) Network Nanocomposite for the Selective Removal of Pb (II) and Hg (II) from Synthetic Wastewater. ACS Sustain. Chem. Eng. 2018, 6, 14785–14794.
  222. Fu, W.; Huang, Z. Magnetic Dithiocarbamate Functionalized Reduced Graphene Oxide for the Removal of Cu (II), Cd (II), Pb (II), and Hg (II) Ions from Aqueous Solution: Synthesis, Adsorption, and Regeneration. Chemosphere 2018, 209, 449–456.
  223. Song, Y.; Lu, M.; Huang, B.; Wang, D.; Wang, G.; Zhou, L. Decoration of Defective MoS2 Nanosheets with Fe3O4 Nanoparticles as Superior Magnetic Adsorbent for Highly Selective and Efficient Mercury Ions (Hg2+) Removal. J. Alloys Compd. 2018, 737, 113–121.
  224. Facchi, D.P.; Cazetta, A.L.; Canesin, E.A.; Almeida, V.C.; Bonafé, E.G.; Kipper, M.J.; Martins, A.F. New Magnetic Chitosan/Alginate/Fe3O4@SiO2 Hydrogel Composites Applied for Removal of Pb (II) Ions from Aqueous Systems. Chem. Eng. J. 2018, 337, 595–608.
  225. Huang, X.; Zhan, X.; Wen, C.; Xu, F.; Luo, L. Amino-Functionalized Magnetic Bacterial Cellulose/Activated Carbon Composite for Pb2+ and Methyl Orange Sorption from Aqueous Solution. J. Mater. Sci. Technol. 2018, 34, 855–863.
  226. Zhang, X.; Sun, C.; Zhang, L.; Liu, H.; Cao, B.; Liu, L.; Gong, W. Adsorption Studies of Cadmium onto Magnetic Fe3O4@FePO4 and Its Preconcentration with Detection by Electrothermal Atomic Absorption Spectrometry. Talanta 2018, 181, 352–358.
  227. Zhang, Y.; Ni, S.; Wang, X.; Zhang, W.; Lagerquist, L.; Qin, M.; Willför, S.; Xu, C.; Fatehi, P. Ultrafast Adsorption of Heavy Metal Ions onto Functionalized Lignin-Based Hybrid Magnetic Nanoparticles. Chem. Eng. J. 2019, 372, 82–91.
  228. Banerjee, S.; Kumar, N.P.; Srinivas, A.; Roy, S. Core-Shell Fe3O4@Au Nanocomposite as Dual-Functional Optical Probe and Potential Removal System for Arsenic (III) from Water. J. Hazard. Mater. 2019, 375, 216–223.
  229. Fu, W.; Wang, X.; Huang, Z. Remarkable Reusability of Magnetic Fe3O4-Encapsulated C3N3S3 Polymer/Reduced Graphene Oxide Composite: A Highly Effective Adsorbent for Pb and Hg Ions. Sci. Total Environ. 2019, 659, 895–904.
  230. Rowley, J.; Abu-Zahra, N.H. Synthesis and Characterization of Polyethersulfone Membranes Impregnated with (3-Aminopropyltriethoxysilane) APTES-Fe3O4 Nanoparticles for As (V) Removal from Water. J. Environ. Chem. Eng. 2019, 7, 102875.
  231. Ramutshatsha-Makhwedzha, D.; Ngila, J.C.; Ndungu, P.G.; Nomngongo, P.N. Ultrasound Assisted Adsorptive Removal of Cr, Cu, Al, Ba, Zn, Ni, Mn, Co and Ti from Seawater Using Fe2O3-SiO2-PAN Nanocomposite: Equilibrium Kinetics. J. Mar. Sci. Eng. 2019, 7, 133.
  232. Zhang, L.; Guo, J.; Huang, X.; Wang, W.; Sun, P.; Li, Y.; Han, J. Functionalized Biochar-Supported Magnetic MnFe2O4 Nanocomposite for the Removal of Pb (II) and Cd (II). RSC Adv. 2019, 9, 365–376.
  233. Xia, K.; Guo, Y.; Shao, Q.; Zan, Q.; Bai, R. Removal of Mercury (II) by EDTA-Functionalized Magnetic CoFe2O4@SiO2 Nanomaterial with Core-Shell Structure. Nanomaterials 2019, 9, 1532.
  234. Feng, G.; Ma, J.; Zhang, X.; Zhang, Q.; Xiao, Y.; Ma, Q.; Wang, S. Magnetic Natural Composite Fe3O4 for Removal of Heavy Metals from Acid Mine Drainage. J. Colloid Interface Sci. 2019, 538, 132–141.
  235. Wu, Z.; Deng, W.; Zhou, W.; Luo, J. Novel Magnetic Polysaccharide/Graphene Oxide @Fe3O4 Gel Beads for Adsorbing Heavy Metal Ions. Carbohydr. Polym. 2019, 216, 119–128.
  236. Zendehdel, M.; Ramezani, M.; Shoshtari-yeganeh, B.; Salmani, A. Simultaneous Removal of Pb (II), Cd (II) and Bacteria from Aqueous Solution Using Amino-Functionalized Fe3O 4 / NaP Zeolite Nanocomposite. Environ. Technol. 2019, 40, 3689–3704.
  237. Anush, S.M.; Vishalakshi, B. Modified Chitosan Gel Incorporated with Magnetic Nanoparticle for Removal of Cu (II) and Cr (VI) from Aqueous Solution. Int. J. Biol. Macromol. 2019, 133, 1051–1062.
  238. Xu, H.; Yuan, H.; Yu, J.; Lin, S. Study on the Competitive Adsorption and Correlational Mechanism for Heavy Metal Ions Using the Carboxylated Magnetic Iron Oxide Nanoparticles (MNPs-COOH) as Efficient Adsorbents. Appl. Surf. Sci. 2019, 473, 960–966.
  239. Fan, H.; Ma, X.; Zhou, S.; Huang, J.; Liu, Y.; Liu, Y. Highly Efficient Removal of Heavy Metal Ions by Carboxymethyl Cellulose-Immobilized Fe3O4 Nanoparticles Prepared via High-Gravity Technology. Carbohydr. Polym. 2019, 213, 39–49.
  240. Zhang, H.; Tan, X.; Qiu, T.; Zhou, L.; Li, R.; Deng, Z. A Novel and Biocompatible Fe3O4 Loaded Chitosan Polyelectrolyte Nanoparticles for the Removal of Cd2+ Ion. Int. J. Biol. Macromol. 2019, 141, 1165–1174.
  241. Al Yaqoob, K.; Bououdina, M.; Akhter, M.S.; Al Najar, B.; Vijaya, J.J. Selectivity and Efficient Pb and Cd Ions Removal by Magnetic MFe2O4 (M=Co, Ni, Cu and Zn) Nanoparticles. Mater. Chem. Phys. 2019, 232, 254–264.
  242. Tahir, M.U.; Su, X.; Zhao, M.; Liao, Y.; Wu, R.; Chen, D. Preparation of Hydroxypropyl-Cyclodextrin-Graphene/Fe3O4 and Its Adsorption Properties for Heavy Metals. Surf. Interfaces 2019, 16, 43–49.
  243. Zhou, G.; Wang, Y.; Zhou, R.; Wang, C.; Jin, Y.; Qiu, J.; Hua, C.; Cao, Y. Synthesis of Amino-Functionalized Bentonite/CoFe2O4@MnO2 Magnetic Recoverable Nanoparticles for Aqueous Cd2+ Removal. Sci. Total Environ. 2019, 682, 505–513.
  244. Masjedi, A.; Askarizadeh, E.; Baniyaghoob, S. Magnetic Nanoparticles Surface-Modified with Tridentate Ligands for Removal of Heavy Metal Ions from Water. Mater. Chem. Phys. 2020, 249, 122917.
  245. Shi, Y.; Xing, Y.; Deng, S.; Zhao, B.; Fu, Y.; Liu, Z. Synthesis of Proanthocyanidins-Functionalized Fe3O4 Magnetic Nanoparticles with High Solubility for Removal of Heavy-Metal Ions. Chem. Phys. Lett. 2020, 753, 137600.
  246. Kulal, P.; Badalamoole, V. Efficient Removal of Dyes and Heavy Metal Ions from Wastewater Using Gum Ghatti–Graft–Poly(4-Acryloylmorpholine) Hydrogel Incorporated with Magnetite Nanoparticles. J. Environ. Chem. Eng. 2020, 8, 104207.
  247. Yoo, J.; Kim, H.S.; Park, S.Y.; Kwon, S.; Lee, J.; Koo, J.; Seo, Y.S. Instantaneous Integration of Magnetite Nanoparticles on Graphene Oxide Assisted by Ultrasound for Efficient Heavy Metal Ion Retrieval. Ultrason. Sonochem. 2020, 64, 104962.
  248. El-Dib, F.I.; Mohamed, D.E.; El-Shamy, O.A.A.; Mishrif, M.R. Study the Adsorption Properties of Magnetite Nanoparticles in the Presence of Different Synthesized Surfactants for Heavy Metal Ions Removal. Egypt. J. Pet. 2020, 29, 1–7.
  249. Zhang, X.; Huang, Y.; He, X.; Lin, J.; Yang, X.; Li, D.; Yu, M.; Yu, C.; Tang, C. Synergistic Adsorption of Pb (II) Ions by Fe3O4 Nanoparticles-Decorated Porous BN Nanofibers. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124400.
  250. Kamari, S.; Shahbazi, A. Biocompatible Fe3O4@SiO2-NH2 Nanocomposite as a Green Nanofiller Embedded in PES–Nanofiltration Membrane Matrix for Salts, Heavy Metal Ion and Dye Removal: Long–Term Operation and Reusability Tests. Chemosphere 2020, 243, 125282.
  251. Pillai, P.; Kakadiya, N.; Timaniya, Z.; Dharaskar, S.; Sillanpaa, M. Removal of Arsenic Using Iron Oxide Amended with Rice Husk Nanoparticles from Aqueous Solution. Mater. Today Proc. 2020, 28, 830–835.
  252. Asadi, R.; Abdollahi, H.; Gharabaghi, M.; Boroumand, Z. Effective Removal of Zn (II) Ions from Aqueous Solution by the Magnetic MnFe2O4 and CoFe2O4 Spinel Ferrite Nanoparticles with Focuses on Synthesis, Characterization, Adsorption, and Desorption. Adv. Powder Technol. 2020, 31, 1480–1489.
  253. Abu Taleb, M.; Kumar, R.; Al-Rashdi, A.A.; Seliem, M.K.; Barakat, M.A. Fabrication of SiO2/CuFe2O4/Polyaniline Composite: A Highly Efficient Adsorbent for Heavy Metals Removal from Aquatic Environment. Arab. J. Chem. 2020, 13, 7533–7543.
  254. You, J.; Zhao, Y.; Wang, L.; Bao, W.; He, Y. Atomic Layer Deposition of γ-Fe2O3 Nanoparticles on Modified MWCNT for Efficient Adsorption of Cr (VI) Ions from Aqueous Solution. J. Phys. Chem. Solids 2020, 142, 109441.
  255. Zhou, Z.; Liu, X.; Zhang, M.; Jiao, J.; Zhang, H.; Du, J.; Zhang, B.; Ren, Z. Preparation of Highly Efficient Ion-Imprinted Polymers with Fe3O4 Nanoparticles as Carrier for Removal of Cr (VI) from Aqueous Solution. Sci. Total Environ. 2020, 699, 134334.
  256. Jafari, Z.; Avargani, V.M.; Rahimi, M.R.; Mosleh, S. Magnetic Nanoparticles-Embedded Nitrogen-Doped Carbon Nanotube/Porous Carbon Hybrid Derived from a Metal-Organic Framework as a Highly Efficient Adsorbent for Selective Removal of Pb (II) Ions from Aqueous Solution. J. Mol. Liq. 2020, 318, 113987.
  257. Xiao, J.; Hu, R.; Chen, G.; Xing, B. Facile Synthesis of Multifunctional Bone Biochar Composites Decorated with Fe/Mn Oxide Micro-Nanoparticles: Physicochemical Properties, Heavy Metals Sorption Behavior and Mechanism. J. Hazard. Mater. 2020, 399, 123067.
  258. Subana, P.S.; Manjunatha, C.; Manmadha, R.B.; Venkateswarlu, B.; Nagaraju, G.; Suresh, R. Surface Functionalized Magnetic α-Fe2O3 Nanoparticles: Synthesis, Characterization and Hg2+ Ion Removal in Water. Surf. Interfaces 2020, 21, 100680.
  259. Devatha, C.P.; Shivani, S. Novel Application of Maghemite Nanoparticles Coated Bacteria for the Removal of Cadmium from Aqueous Solution. J. Environ. Manag. 2020, 258, 110038.
  260. Wang, H.; Wang, Z.; Yue, R.; Gao, F.; Ren, R.; Wei, J.; Wang, X.; Kong, Z. Functional Group-Rich Hyperbranched Magnetic Material for Simultaneous Efficient Removal of Heavy Metal Ions from Aqueous Solution. J. Hazard. Mater. 2020, 384, 121288.
  261. Mahanty, S.; Chatterjee, S.; Ghosh, S.; Tudu, P.; Gaine, T.; Bakshi, M.; Das, S.; Das, P.; Bhattacharyya, S.; Bandyopadhyay, S.; et al. Synergistic Approach towards the Sustainable Management of Heavy Metals in Wastewater Using Mycosynthesized Iron Oxide Nanoparticles: Biofabrication, Adsorptive Dynamics and Chemometric Modeling Study. J. Water Process Eng. 2020, 37, 101426.
  262. Kulal, P.; Badalamoole, V. Magnetite Nanoparticle Embedded Pectin-Graft-Poly(N-Hydroxyethylacrylamide) Hydrogel: Evaluation as Adsorbent for Dyes and Heavy Metal Ions from Wastewater. Int. J. Biol. Macromol. 2020, 156, 1408–1417.
  263. Shi, S.; Xu, C.; Wang, X.; Xie, Y.; Wang, Y.; Dong, Q.; Zhu, L.; Zhang, G.; Xu, D. Electrospinning Fabrication of Flexible Fe3O4 Fibers by Sol-Gel Method with High Saturation Magnetization for Heavy Metal Adsorption. Mater. Des. 2020, 186, 108298.
  264. Almomani, F.; Bhosale, R.; Khraisheh, M.; Kumar, A.; Almomani, T. Heavy Metal Ions Removal from Industrial Wastewater Using Magnetic Nanoparticles (MNP). Appl. Surf. Sci. 2020, 506, 144924.
  265. Hosain, A.N.A.; El Nemr, A.; El Sikaily, A.; Mahmoud, M.E.; Amira, M.F. Surface Modifications of Nanochitosan Coated Magnetic Nanoparticles and Their Applications in Pb (II), Cu (II) and Cd (II) Removal. J. Environ. Chem. Eng. 2020, 8, 104316.
  266. Dehghan, M.A.; Ghazanfari, M.H.; Jamialahmadi, M.; Helalizadeh, A. Adsorption of Silica Nanoparticles onto Calcite: Equilibrium, Kinetic, Thermodynamic and DLVO Analysis. Chem. Eng. J. 2015, 281, 334–344.
  267. Hou, L.; Liang, Q.; Wang, F. Mechanisms That Control the Adsorption-Desorption Behavior of Phosphate on Magnetite Nanoparticles: The Role of Particle Size and Surface Chemistry Characteristics. RSC Adv. 2020, 10, 2378–2388.
  268. Karvelas, E.G.; Lampropoulos, N.K.; Karakasidis, T.E.; Sarris, I.E. A computational tool for the estimation of the optimum gradient magnetic field for the magnetic driving of the spherical particles in the process of cleaning water. Desalination Water Treat. 2017, 99, 27–33.
  269. Peng, W.; Li, H.; Liu, Y.; Song, S. A Review on Heavy Metal Ions Adsorption from Water by Graphene Oxide and Its Composites. J. Mol. Liq. 2017, 496–504.
  270. Gautam, P.K.; Shivalkar, S.; Banerjee, S. Synthesis of M. Oleifera Leaf Extract Capped Magnetic Nanoparticles for Effective Lead Removal from Solution: Kinetics, Isotherm and Reusability Study. J. Mol. Liq. 2020, 305, 112811.
  271. Jadidi, M.; Etesami, N.; Nasr, E.M. Adsorption and Desorption Process of Chromium Ions Using Magnetic Iron Oxide Nanoparticles and Its Relevant Mechanism. Iran. J. Chem. Eng. 2017, 14, 31–40.
  272. Lata, S.; Singh, P.K.; Samadder, S.R. Regeneration of Adsorbents and Recovery of Heavy Metals: A Review. Int. J. Environ. Sci. Technol. 2015, 12, 1461–1478.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 543
Revisions: 2 times (View History)
Update Date: 21 Dec 2021
1000/1000
Video Production Service