Topic Review
Gastrin-Releasing Peptide Receptor  Targeting and Nanosystems
Advances in nanomedicine bring the attention of researchers to the molecular targets that can play a major role in the development of novel therapeutic and diagnostic modalities for cancer management. The choice of a proper molecular target can decide the efficacy of the treatment and endorse the personalized medicine approach. Gastrin-releasing peptide receptor (GRPR) is a G-protein-coupled membrane receptor, well known to be overexpressed in numerous malignancies including pancreatic, prostate, breast, lung, colon, cervical, and gastrointestinal cancers. Therefore, many research groups express a deep interest in targeting GRPR with their nanoformulations. A broad spectrum of the GRPR ligands as well as methods of their incorporation with the various delivery vehicles have been described in the literature. Proper design allows tuning of the properties of the final formulation, particularly in the field of the ligand affinity to the receptor and internalization possibilities.
  • 527
  • 27 Feb 2023
Topic Review
Gasochromic WO3 Nanostructures
Gasochromic WO3 nanostructure sensors work based on changes in their optical properties and color variation when exposed to hydrogen gas. They can work at low or room temperatures and, therefore, are good candidates for the detection of hydrogen leakage with low risk of explosion. Once their morphology and chemical composition are carefully designed, they can be used for the realization of sensitive, selective, low-cost, and flexible hydrogen sensors.
  • 710
  • 23 Jun 2021
Topic Review
Gas/Solid Interface Charging Phenomena
Surface charge accumulation in the spacer modifies local electric fields, which restricts the industrialization of high voltage direct current (HVDC) gas-insulated transmission lines (GILs). In this paper, the state of art in gas/solid interface charging physics and models, covering areas of charge measurement techniques, charge transport mechanisms, charge related DC surface flashover models, and charge control methods, is reviewed and discussed. Key issues that should be considered in future studies are summarized and proposed. The purpose of this work is to provide a brief update on the most important and latest progress in this research area, and to educate readers as to the current state of the gas-solid interface charging phenomenon, which has seen great progress in the past few years.
  • 558
  • 10 Dec 2020
Topic Review
Gas-Sensing Mechanisms of MXenes and MXene-Based Heterostructures
MXenes are a class of 2D transition-metal carbides, nitrides, and carbonitrides with exceptional properties, including substantial electrical and thermal conductivities, outstanding mechanical strength, and a considerable surface area, rendering them an appealing choice for gas sensors. 
  • 523
  • 08 Dec 2023
Topic Review
Gas Sensors Based on Titanium Oxides
Nanostructured titanium compounds have recently been applied in the design of gas sensors. Among titanium compounds, titanium oxides (TiO2) are the most frequently used in gas sensing devices. Very recently, the applicability of non-stoichiometric titanium oxide (TiO2−x)-based layers for the design of gas sensors was demonstrated. The most promising titanium compounds and hetero- and nano-structures based on these compounds are discussed and the possibility to tune the sensitivity and selectivity of titanium compound-based sensing layers is addressed.  
  • 877
  • 28 May 2022
Topic Review
Gas Sensors Based on Single-Wall Carbon Nanotubes
Single-wall carbon nanotubes (SWCNTs) have a high aspect ratio, large surface area, good stability and unique metallic or semiconducting electrical conductivity, they are therefore considered a promising candidate for the fabrication of flexible gas sensors that are expected to be used in the Internet of Things and various portable and wearable electronics. 
  • 513
  • 31 Aug 2022
Topic Review
Gas Monitoring for Graphene Medical Diagnosis
The development of graphene and its derivatives in gas-phase biomarker detection was reviewed in terms of the detection principle and the latest detection methods and applications in several common gases, etc. 
  • 432
  • 09 Feb 2022
Topic Review
Gas Hydrate Technology
Innovating methods for treating industrial wastewater containing heavy metals frequently incorporate toxicity-reduction technologies to keep up with regulatory requirements. This research reviews the latest advances, benefits, opportunities and drawbacks of several heavy metal removal treatment systems for industrial wastewater in detail. The conventional physicochemical techniques used in heavy metal removal processes with their advantages and limitations are evaluated. A particular focus is given to innovative gas hydrate-based separation of heavy metals from industrial effluent with their comparison, advantages and limitations in the direction of commercialization as well as prospective remedies. Clathrate hydrate-based removal is a potential technology for the treatment of metal-contaminated wastewater. In this research, a complete assessment of the literature is addressed based on removal efficiency, enrichment factor and water recovery, utilizing the gas hydrate approach. It is shown that gas hydrate-based treatment technology may be the way of the future for water management purposes, as the industrial treated water may be utilized for process industries, watering, irrigation and be safe to drink. 
  • 1.3K
  • 15 Apr 2022
Topic Review
Gas Chromatography Olfactometry
Gas Chromatography-olfactometry (GC-O) is, by nature, the technique of choice for the screening of the molecules with odour (odorants) responsible for the aromatic sensory properties of any product. Ideally, the GC-O technique should provide an unbiased ranking of the odorants attending to the relevance of their contribution to those sensory properties. Such ranking is essential for further steps directed to the elucidation of the chemical nature of the odorants, for their quantification or for a basic understanding of the chemical bases of the aromatic perception in such product. The review discusses the different approaches for GC-O specifically applied to deciphering wine aroma. The critical difference between approaches is whether the ranking of odorants is carried out on an extract containing all the odorants present in the product or on an extract representative of the odorants contained in the vapour phases that cause the odour and flavor. Historically, most researchers have preferred techniques based on total extracts, because of sensitivity and operational issues. It is argued that the second alternative is more direct and can be more efficient, but it requires a good understanding of the factors affecting orthonasal olfaction, handling volatiles (purging, trapping, eluting, and separating) and about the sensory assessment of GC effluents.
  • 1.1K
  • 12 Jan 2021
Topic Review
Gas Chromatography - Vacuum Ultraviolet Spectroscopy (GC-VUV)
Gas Chromatography - Vacuum Ultraviolet (GC-VUV) spectroscopy is a universal detection platform for gas chromatography. The first benchtop detector was introduced in 2014 with detection capabilities between 120 - 240 nm. This portion of the ultraviolet spectrum had historically been restricted to bright source synchrotron facilities due to significant background absorption challenges inherent to working within the wavelength range. Further detector platform development has extended the wavelength detection range out from 120 - 430 nm. VUV detection provides both qualitative and quantitative spectral information for most gas phase compounds. GC-VUV spectral data is three dimensional (time, absorbance, wavelength) and specific to chemical structure. Nearly all compounds absorb in the VUV region of the electromagnetic spectrum with the exception of carrier gases hydrogen, helium, and argon. The high energy, short wavelength VUV photons probe electronic transitions in almost all chemical bonds including ground state to excited state. The result is spectral "fingerprints" that are specific to individual compound structure and can be readily identified by the VUV library. Unique VUV spectra enable closely related compounds such as structural isomers to be clearly differentiated. VUV detectors complement mass spectrometry, which struggles with characterizing constitutional isomers and compounds with low mass quantitation ions. VUV spectra can also be used to deconvolve analyte co-elution, resulting in an accurate quantitative representation of individual analyte contribution to the original response. This characteristically lends itself to significantly reducing GC runtimes through flow rate-enhanced chromatographic compression. VUV spectroscopy follows the simple linear relationship between absorbance and concentration described by the Beer-Lambert Law resulting in more accurate retention time-based identification. VUV absorbance spectra also exhibit feature similarity within compound classes, meaning VUV detectors can rapidly compound class characterization in complex samples through compound spectral shape and retention index information. Advances in technology reduces the typical group analysis data processing time from 15-30 minutes to <1 minute per sample.
  • 1.1K
  • 17 Nov 2022
  • Page
  • of
  • 467
ScholarVision Creations