Topic Review
Geopolymer Materials
The advancement of eco-friendly technology in the construction sector has been improving rapidly. As a result, multiple building materials were developed, enhanced, and proposed as replacements for some traditional materials. One notable example presents geopolymer as a substitute for ordinary Portland concrete (OPC). The manufacturing process of (OPC) generates CO2 emissions and a high energy demand, both of which contribute to ozone depletion and global warming. The implementation of geopolymer concrete (GPC) technology in the construction sector provides a path to more sustainable growth and a cleaner environment. This is due to geopolymer concrete’s ability to reduce environmental pollutants and reduce the construction industry’s carbon footprint. This is achieved through its unique composition, which typically involves industrial byproducts like fly ash or slag. These materials, rich in silicon and aluminum, react with alkaline solutions to form a binding gel, bypassing the need for the high-energy clinker production required in OPC. The use of such byproducts not only reduces CO2 emissions but also contributes to waste minimization. Additionally, geopolymer offers extra advantages compared to OPC, including improved mechanical strength, enhanced durability, and good stability in acidic and alkaline settings. Such properties make GPC particularly suitable for a range of construction environments, from industrial applications to infrastructure projects exposed to harsh conditions. 
  • 691
  • 15 Dec 2023
Topic Review
Geopolymer Concrete
Geopolymer concrete is a type of concrete that is made by reacting aluminate and silicate bearing materials with a caustic activator, such as fly ash or slag from iron and metal production. It can be a suitable substitute for ordinary Portland cement (OPC). 
  • 26.2K
  • 18 Feb 2022
Topic Review
Geopolymer Composites with Self-Cleaning Capability
By geopolymer, it is meant that type of amorphous, alumino-silicate cementitious material which can be synthesized by the polycondensation reaction between a geopolymeric material and alkali polysilicates. This process is called geopolymerization. This innovative technology allows for the transformation of alumino-silicate materials into products called geopolymers or inorganic polymers. Geopolymers, therefore, represent a material developed as an environmentally friendly alternative for the construction industry, but also as a solution for exploitation, reintroduction into the economic circuit of some industrial wastes and by-products, the most common being fly ash, slag kaolin and metakaolin mostly activated with alkaline solutions based on Na2SiO3 in combination with NaOH.
  • 235
  • 10 Aug 2023
Topic Review
Geopolymer Binders
Based on numerous studies conducted in recent years, geopolymer binders are considered to be sustainable and environmentally friendly cementitious materials and are attractive in terms of their good cost–performance ratio due to low energy consuming production process and use of secondary raw materials instead of virgin ones [1][2].
  • 1.9K
  • 26 Oct 2020
Topic Review
Genus Mentha
Mint (Mentha species) exhibits multiple health beneficial properties, such as prevention from cancer development and anti-obesity, antimicrobial, anti-inflammatory, anti-diabetic, and cardioprotective effects, as a result of its antioxidant potential, combined with low toxicity and high efficacy. Mentha species are widely used in savory dishes, food, beverages, and confectionary products. Phytochemicals derived from mint also showed anticancer activity against different types of human cancers such as cervix, lung, breast and many others. Mint essential oils show a great cytotoxicity potential, by modulating MAPK and PI3k/Akt pathways; they also induce apoptosis, suppress invasion and migration potential of cancer cells lines along with cell cycle arrest, upregulation of Bax and p53 genes, modulation of TNF, IL-6, IFN-γ, IL-8, and induction of senescence phenotype. Essential oils from mint have also been found to exert antibacterial activities against Bacillus subtilis, Streptococcus aureus, Pseudomonas aeruginosa, and many others.
  • 829
  • 18 Mar 2021
Topic Review
Genus Cordyline
Cordyline species have a long history in traditional medicine as a basis of treatment for various ailments such as a bloody cough, dysentery, and a high fever. There are about 26 accepted species names in this genus distributed worldwide, including C. fruticosa, C. autralis, C. stricta, C. cannifolia, and C. dracaenosides. 
  • 647
  • 19 Dec 2023
Topic Review
Generations of Glucose Biosensors
Electrochemical glucose biosensors are widely applied for glucose monitoring due to their unbeatable sensitivity, selectivity, and simplicity. In general, there are four primary generations of glucose biosensor, which are classified according to the electron transfer mechanism. Three generations represent the enzymatic glucose biosensor, and one generation represents the non-enzymatic glucose biosensor.
  • 6.2K
  • 14 Dec 2022
Topic Review
Generation of Hierarchical Bicontinuous Morphology in Coinage Metals
The fundamental essence of material design lies in bringing together the competing aspects of a large specific surface area and rapid transport pathways. This review summarizes the recent advances in the strategies to create a hierarchical bicontinuous morphology in porous metals, focusing mainly on the hierarchical architectures in nanoporous gold. Understanding the advantages of generating hierarchical structures on distinct and well-defined length scales can play a huge role in solving problems in porous materials and can guide the synthesis of new materials for specific applications.
  • 473
  • 29 Mar 2022
Topic Review
Generation Nanobubbles in Flotation
Nanobubbles (NBs), also known as ultrafine bubbles, are extremely small (finer than 1 µm) and have several unique physical and physicochemical properties, making them very different from sub-micron (SMBs < 50 µm), micro- (MBs, 50–1000 µm) and conventional air bubbles (CBs, >1000 µm). They can be categorized into surface NBs (formed at solid–liquid interfaces), bulk NBs (exist in bulk liquid and are spherical with a typical diameter of 100–200 nm), and micro-pancakes (quasi-two-dimensional gaseous domains).
  • 543
  • 11 May 2022
Topic Review
General Synthesis Methods of Poly (ε-caprolactone)-Based Graft Copolymers
Synthetic biopolymers are attractive alternatives to biobased polymers, especially because they rarely induce an immune response in a living organism. Poly ε-caprolactone (PCL) is a well-known synthetic aliphatic polyester universally used for many applications, including biomedical and environmental ones.  To expand the range of applications for PCL, researchers have investigated the possibility of grafting polymer chains onto the PCL backbone. As the PCL backbone is not functionalized, it must be first functionalized in order to be able to graft reactive groups onto the PCL chain. These reactive groups will then allow the grafting of new reagents and especially new polymer chains. Grafting of polymer chains is mainly carried out by “grafting from” or “grafting onto” methods.
  • 599
  • 29 Nov 2022
  • Page
  • of
  • 467
ScholarVision Creations