Topic Review
Highly Dispersed Metal Catalysts
Single-atom catalysts (SACs), consisting of metals atomically dispersed on a support, are considered as advanced materials bridging homogeneous and heterogeneous catalysis, representing the catalysis at the limit. The enhanced performance of these catalysts is due to the combination of distinct factors such as well-defined active sites, comprising metal single atoms in different coordination environments also varying its valence state and strongly interacting with the support, in this case porous carbons, maximizing then the metal efficiency in comparison with other metal surfaces consisting of metal clusters and/or metal nanoparticles.
  • 1.1K
  • 06 Apr 2021
Topic Review
High-Voltage Film Capacitors
High-voltage capacitors are key components for circuit breakers and monitoring and protection devices, and are important elements used to improve the efficiency and reliability of the grid. Different technologies are used in high-voltage capacitor manufacturing process, and at all stages of this process polymeric films must be used, along with an encapsulating material, which can be either liquid, solid or gaseous.
  • 800
  • 24 Mar 2021
Topic Review
High-Velocity Oxy-Fuel Technology
Due to the toxicity associated with chromium electrodeposition, alternatives to that process are highly sought after. One of those potential alternatives is High Velocity Oxy-Fuel (HVOF). Costs and environmental impacts per piece coated are then evaluated. On an economic side, the lower labor requirements of HVOF allow one to noticeably reduce the costs (20.9% reduction) per functional unit (F.U.). Furthermore, on an environmental side, HVOF has a lower impact for the toxicity compared to electrodeposition, even if the results are a bit more mixed in other impact categories.
  • 368
  • 26 May 2023
Topic Review
High-Temperature Polymer Electrolyte Membranes
Sufficient access to clean energy sources is one of the ongoing key challenges for global development that directly impacts industrial development, economic growth, and human well-being. Historically, the energy sector is widely dominated based on fossil fuels (such as petroleum fuels, natural gas, coal, etc.), which are the primary sources of carbon dioxide (CO2) and other greenhouse gases emissions in the environment. 
  • 639
  • 09 Sep 2021
Topic Review
High-Temperature PEM Fuel Cells
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. Also, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review will highlight the important outcomes found in recent literature about the HT-PEM fuel cell. The main objectives of this review paper will be as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes, (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
  • 1.1K
  • 28 Aug 2021
Topic Review
High-Pressure Mechanistic, Bioinorganic NO Chemistry
Nitric oxide (NO) is a short-living free radical, and, in contrast to many signaling agents (e.g., various peptides), which rely on receptors where structural relationships determine their function, the chemistry of NO determines its biological roles. There are two distinct reaction types—direct and indirect—which depend on the NO concentration, reactive species formed and reaction kinetics. The direct effects involve interactions of NO itself with biological targets such as redox metal centers, redox-active amino acids, or other radical species.
  • 698
  • 08 Nov 2021
Topic Review
High-Performance Photodetectors Based on Nanostructured-Perovskites
In recent years, high-performance photodetectors have attracted wide attention because of their important applications including imaging, spectroscopy, fiber-optic communications, remote control, chemical/biological sensing and so on. Nanostructured perovskites are extremely suitable for detective applications with their long carrier lifetime, high carrier mobility, facile synthesis, and beneficial to device miniaturization. Because the structure of the device and the dimension of nanostructured perovskite have a profound impact on the performance of photodetector, we divide nanostructured perovskite into 2D, 1D, and 0D, and review their applications in photodetector (including photoconductor, phototransistor, and photodiode), respectively. The devices exhibit high performance with high photoresponsivity, large external quantum efficiency (EQE), large gain, high detectivity, and fast response time. The intriguing properties suggest that nanostructured perovskites have a great potential in photodetection. 
  • 609
  • 07 May 2021
Topic Review
High-Performance Liquid Chromatography Analysis of Coffee-Based Products
Coffee is a very popular beverage worldwide. However, its composition and characteristics are affected by a number of factors, such as geographical and botanical origin, harvesting and roasting conditions, and brewing method used. As coffee consumption rises, the demands on its high quality and authenticity naturally grows as well. Unfortunately, at the same time, various tricks of coffee adulteration occur more frequently, with the intention of quick economic profit. Many analytical methods have already been developed to verify the coffee authenticity, in which the high-performance liquid chromatography (HPLC) plays a crucial role, especially thanks to its high selectivity and sensitivity. 
  • 1.0K
  • 14 Nov 2022
Topic Review
High-Entropy Alloys
Microstructural phase evolution during melting and casting depends on the rate of cooling, the collective mobility of constituent elements, and binary constituent pairs. Parameters used in mechanical alloying and spark plasma sintering, the initial structure of binary alloy pairs, are some of the factors that influence phase evolution in powder-metallurgy-produced HEAs. Factors such as powder flowability, laser power, powder thickness and shape, scan spacing, and volumetric energy density (VED) all play important roles in determining the resulting microstructure in additive manufacturing technology. Large lattice distortion could hinder dislocation motion in HEAs, and this could influence the microstructure, especially at high temperatures, leading to improved mechanical properties in some HEAs. Mechanical properties of some HEAs can be influenced through solid solution hardening, precipitation hardening, grain boundary strengthening, and dislocation hardening. Despite the HEA system showing reliable potential engineering properties if commercialized, there is a need to examine the effects that processing routes have on the microstructure in relation to mechanical properties. 
  • 983
  • 09 Jun 2021
Topic Review
High-Entropy Alloy
Cutting edge of high-entropy alloy superconductors from the perspective of materials research.
  • 840
  • 26 Oct 2020
  • Page
  • of
  • 467
ScholarVision Creations