Topic Review
The Pioneers of Carotenoid Chemistry: László Zechmeister
László Zechmeister, one of the most important pioneers of carotenoid chemistry, died 50 years ago. He founded a carotenoid research group in Pécs (Hungary), which is the only place in the world where carotenoid research has been conducted continuously over the past 95 years.
  • 501
  • 24 Apr 2022
Topic Review
Synthesis of Doped/Hybrid Carbon Dots
Carbon dots (CDs) are a novel type of carbon-based nanomaterial that has gained considerable attention for their unique optical properties, including tunable fluorescence, stability against photobleaching and photoblinking, and strong fluorescence, which is attributed to a large number of organic functional groups (amino groups, hydroxyl, ketonic, ester, and carboxyl groups, etc.). In addition, they also demonstrate high stability and electron mobility. The doping of CDs with organic and inorganic atoms and molecules leads to their functionalization to obtain desired physical and chemical properties for biomedical applications. 
  • 672
  • 22 Apr 2022
Topic Review
Polymeric Hydrogel Carrier for Nerve Repair
Nerve regeneration and repair still remain a huge challenge for both central nervous and peripheral nervous system. Although some therapeutic substances, including neuroprotective agents,clinical drugs and stem cells, as well as various growth factors, are found to be effective to promote nerve repair, a carrier system that possesses a sustainable release behavior, in order to ensure high on-site concentration during the whole repair and regeneration process, and high bioavailability is still highly desirable. Hydrogel, as an ideal delivery system, has an excellent loading capacity and sustainable release behavior, as well as tunable physical and chemical properties to adapt to various biomedical scenarios; thus, it is thought to be a suitable carrier system for nerve repair. 
  • 486
  • 22 Apr 2022
Topic Review
Cutaneous Flavonoid Delivery System
Flavonoids are one of the vital classes of natural polyphenolic compounds abundantly found in plants. Due to their wide range of therapeutic properties, which include antioxidant, anti-inflammatory, photoprotective, and depigmentation effects, flavonoids have been demonstrated to be promising agents in the treatment of several skin disorders. However, their lipophilic nature and poor water solubility invariably lead to limited oral bioavailability. In addition, they are rapidly degraded and metabolized in the human body, hindering their potential contribution to the prevention and treatment of many disorders. Thus, to overcome these challenges, several cutaneous delivery systems have been extensively studied. Topical drug delivery besides offering an alternative administration route also ensures a sustained release of the active compound at the desired site of action. Incorporation into lipid or polymer-based nanoparticles appears to be a highly effective approach for cutaneous delivery of flavonoids with good encapsulation potential and reduced toxicity.
  • 730
  • 22 Apr 2022
Topic Review
Direct Type Electrochemical Glycated Hemoglobin Sensors
Glycated hemoglobin (HbA1c) is the gold standard for measuring glucose levels in the diagnosis of diabetes due to the excellent stability and reliability of this biomarker. HbA1c is a stable glycated protein formed by the reaction of glucose with hemoglobin (Hb) in red blood cells, which reflects average glucose levels over a period of two to three months without suffering from the disturbance of the outside environment. A number of simple, high-efficiency, and sensitive electrochemical sensors have been developed for the detection of HbA1c. Direct type sensors determine HbA1c by detecting the changes in electrical signals including current, potential, and impedance before and after HbA1c is bound to biological affinity molecules pre-fixed on the electrode surface. Direct sensors are divided into amperometric sensors, potentiometric sensors, and impedimetric sensors.
  • 640
  • 22 Apr 2022
Topic Review
Graphene Oxide Thin Films with Drug Delivery Function
Graphene oxide has been used in different fields of nanomedicine as a manager of drug delivery due to its inherent physical and chemical properties that allow its use in thin films with biomedical applications. Several studies demonstrated its efficacy in the control of the amount and the timely delivery of drugs when it is incorporated in multilayer films. It has been demonstrated that graphene oxide layers incorporated in drug delivery systems are able to work either as a nanocarrier, transporting the drugs to their targets or as a barrier delaying the release of drugs to accommodate the treatment schedules. This allows for the development of structured ,sophisticated and time-controlled systems.
  • 657
  • 22 Apr 2022
Topic Review
Applications of Nanotechnology in Food & Cosmetics Preservation
Cosmetic and food products containing water are prone to contamination during the production, storage, and transit process, leading to product spoilage and degraded organoleptic characteristics. The efficient preservation of food and cosmetics is one of the most important issues the industry is facing today. The use of nanotechnology in food and cosmetics for preservation purposes offers the possibility to boost the activity of antimicrobial agents and/or promote their safer distribution into the end product upon incorporation into packaging or film constructions.
  • 775
  • 22 Apr 2022
Topic Review
MNPs@QDs
The presence of food contaminants can cause foodborne illnesses, posing a severe threat to human health. Therefore, a rapid, sensitive, and convenient method for monitoring food contaminants is eagerly needed. The complex matrix interferences of food samples and poor performance of existing sensing probes bring significant challenges to improving detection performances. Nanocomposites with multifunctional features provide a solution to these problems. The combination of the superior characteristics of magnetic nanoparticles (MNPs) and quantum dots (QDs) to fabricate magnetic fluorescent quantum dots (MNPs@QDs) nanocomposites are regarded as an ideal multifunctional probe for food contaminants analysis.
  • 736
  • 22 Apr 2022
Topic Review
Protein Caging Tools for Protein Photoactivation
In biosciences and biotechnologies, it is recently critical to promote research regarding the regulation of the dynamic functions of proteins of interest. Light-induced control of protein activity is a strong tool for a wide variety of applications because light can be spatiotemporally irradiated in high resolutions. Therefore, synthetic, semi-synthetic, and genetic engineering techniques for photoactivation of proteins have been actively developed. As a solution for overcoming barriers in conventional ones, researchers' recent approaches in which proteins were chemically modified with biotinylated caging reagents are introduced to photo-activate a variety of proteins without genetic engineering and elaborate optimization.
  • 802
  • 21 Apr 2022
Topic Review
Leucoagaricus gongylophorus and Leaf-Cutting Ants
Leaf-cutting ants are eusocial insects, as they show a highly developed social structure, manifesting ecological relationships. Their complex structure is characterized by an organized social behavior, the cultivation of a fungus garden and high levels of hygiene, which hinders the management of leaf-cutting ants compared to other insects. Leaf-cutting ants cause damage in agricultural and silviculture areas, mainly in monocultures.
  • 930
  • 21 Apr 2022
  • Page
  • of
  • 467
ScholarVision Creations