Topic Review
Hydrogen Evolution Reaction
In recent years, heteroatom doping has been found to be an effective strategy to improve the electrocatalytic hydrogen evolution reaction (HER) performances of nickel-based catalysts in acidic, neutral, and alkaline media. 
  • 2.7K
  • 26 Oct 2020
Topic Review
Reverse Water Gas Shift Reaction
The catalytic conversion of CO2 to CO by the reverse water gas shift (RWGS) reaction followed by well-established synthesis gas conversion technologies could be a practical technique to convert CO2 to valuable chemicals and fuels in industrial settings. For catalyst developers, prevention of side reactions like methanation, low-temperature activity, and selectivity enhancements for the RWGS reaction are crucial concerns. Cerium oxide (ceria, CeO2) has received considerable attention due to its exceptional physical and chemical properties. 
  • 2.7K
  • 09 Oct 2022
Topic Review
Thin-Film Materials by RF Sputtering
We report on the development of several different thin-film material systems prepared by RF magnetron sputtering at Edith Cowan University nanofabrication labs. While focusing on the RF sputtering process optimizations for new or the previously underexplored material compositions and multilayer structures, we disclose several unforeseen material properties and behaviours. We communicate research results related to the design, prototyping, and practical fabrication of high-performance magneto-optic (MO) materials, oxide based sensor components, and transparent heat regulation coatings for advanced construction and solar windows.
  • 2.6K
  • 30 Oct 2020
Topic Review
Dental-Enamel Junction
Dentin-enamel junction (DEJ) is the boundary layer located between dentin and covering enamel. DEJ has a distinct chemical, mechanical and energetical features than surrounding tissues. Its role lies in the transport of materials between dentin and enamel. At the same time DEJ, mainly due to its scalloped structure, protects the dentin against diffusing of mechanical shocks originating at the enamel boundary.
  • 2.6K
  • 16 Jun 2021
Topic Review
Compositional Engineering of Perovskites
We give a systematic overview of compositional engineering by distinguishing the different defect-reducing mechanisms. Doping effects are divided into influences on: (1) crystallization; (2) lattice properties. Incorporation of dopant influences the lattice properties by: (a) lattice strain relaxation; (b) chemical bonding enhancement; (c) band gap tuning. The intrinsic lattice strain in undoped perovskite was shown to induce vacancy formation. The incorporation of smaller ions, such as Cl, F and Cd, increases the energy for vacancy formation. Zn doping is reported to induce strain relaxation but also to enhance the chemical bonding. The combination of computational studies using (DFT) calculations quantifying and qualifying the defect-reducing propensities of different dopants with experimental studies is essential for a deeper understanding and unraveling insights, such as the dynamics of iodine vacancies and the photochemistry of the iodine interstitials, and can eventually lead to a more rational approach in the search for optimal photovoltaic materials.
  • 2.6K
  • 28 Oct 2020
Topic Review
Polycrystalline Materials
Polycrystalline materials can be defined as the counterpart of single crystals. These latter  arise from solution crystallization by transfer of a solute from the liquid phase to the crystalline phase. Crystallization from melt originates instead crystallites or grains, that is regular crystalline regions  randomly oriented and separated one anoher by borders with geometric shapes, Polycrystalline materials are the result of a multiple nucleation process, whereas monocrystals are ideally obtainable by dipping a seed crystal into a supercooled melt.  Polycrystalline materials often consist of spherulites, i.e. crystalline aggregates growing with a rounded shape up to impingment with adjacent spherulites. The borders amongst spherulites and the size and the final shape of spherulites affect considerably the properties of polycrystalline materials.
  • 2.6K
  • 12 May 2021
Topic Review
Salt Bridges investigated by NMR
Salt bridges are interactions, electrostatic combined with hydrogen bonding, between oppositely charged residues, typically carboxylic acid anions and ammonium ions, provided they are close together.  For an illustration see Fig. 1. Salt bridges are of particular interest in proteins and other biomolecules.  In the present contribution salt bridges are investigated by means of 1H chemical shifts, determination of pKa values and deuterium isotope effect on 15N and 1H chemical shifts.  In the latter case model compounds like ammonium ions are also investigated and the use of deuterium isotope effects on chemical shifts are supported by Density Functional Theory (DFT) calculations.  The use of isotope effects on chemical shifts enables a distinction between salt bridges observed in the solid state by X-ray diffraction and those actually present in solution.
  • 2.6K
  • 27 Oct 2020
Topic Review
Electron Transport Layer
The electron transport layer (ETL) acts as a function of collecting electrons and blocking the transport of holes to the FTO electrode in the PSC. The mesoporous structure of the ETL promotes the crystallization and film formation of perovskite and shortens the migration path of photogenerated electrons. A suitable ETL should have an energy band position that matches the perovskite material.
  • 2.6K
  • 10 Apr 2023
Topic Review
CO2 Activation on Catalyst Surfaces
Utilizing CO2 as a sustainable carbon source to form valuable products requires activating it by active sites on catalyst surfaces. These active sites are usually in or below the nanometer scale. Some metals and metal oxides in this scale dimension can catalyze the CO2 transformation reactions. Herein, CO2 activation on metal-based catalyst surfaces and how their structures impact the activation process are highlighted.
  • 2.6K
  • 13 Dec 2021
Topic Review
GaN(0001) Surfaces
Herein, the surface properties of gallium nitride (GaN) of the wurtzite form, (0001) oriented are presented. X-ray and UV photoelectron spectroscopies (XPS, UPS) were employed to show chemical and physical characters of the surface . Basic information about electronic structure of various doped GaN(0001) surfaces as well as surface Fermi level pinning are discussed.
  • 2.6K
  • 10 Feb 2021
  • Page
  • of
  • 467
Video Production Service