Topic Review
Magnetic Elements for Neuromorphic Computing
Neuromorphic computing is also called cognitive or adaptive computing. Brain-inspired computers could work like neuronal networks, be more energy-efficient, and could learn and solve special mathematical problems faster than recent computers. It is assumed to be significantly more energy efficient than, and at the same time expected to outperform, conventional computers in several applications, such as data classification, since it overcomes the so-called von Neumann bottleneck. Artificial synapses and neurons can be implemented into conventional hardware using new software, but also be created by diverse spintronic devices and other elements to completely avoid the disadvantages of recent hardware architecture.
  • 538
  • 01 Dec 2021
Topic Review
Magnetic Drug-Delivery System
Magnetic nanoparticles (MNPs) are nanoscale particles (1–100 nm) that can be guided through an external magnetic field due to their superparamagnetic, ferrimagnetic, and ferromagnetic properties, which may provide features for biomedical applications. 
  • 507
  • 23 Aug 2022
Topic Review
Magnetic Catalysts in Ullmann-Type N-Arylation Reactions
Ullmann-type C–N heterocoupling reactions have been applied for the syntheses of N-arylated amines. Transition metal-catalyzed N-arylations have been recognized as particularly efficient procedures for the preparation of nitrogen-containing aromatic systems. These reactions typically carried out under optimized conditions, have also been found to be suitable for the synthesis of complex molecules with other functional groups, including natural products, drugs, or pharmaceuticals. Most importantly, copper-catalyzed N-arylations have been studied and employed in the total synthesis of biologically active compounds. The construction of fused N-heterocyclic compounds also remained the subject of extensive research because of their potential applications in drug discovery and the development of functional materials. 
  • 408
  • 02 Aug 2023
Topic Review
Magnetic Bacterial Cellulose Biopolymers
Bacterial cellulose (BC) is a biopolymer that has been widely investigated due to its useful characteristics, such as nanometric structure, simple production and biocompatibility, enabling the creation of novel materials made from additive BC in situ and/or ex situ. 
  • 375
  • 17 Feb 2023
Topic Review
Magnesium Forging
Interest in magnesium alloys and their applications has risen in recent years. This trend is mainly evident in casting applications, but wrought alloys are also increasingly coming into focus. Among the most common forming processes, forging is a promising candidate for the industrial production of magnesium wrought products. This overview is intended to give a general introduction into the forging of magnesium alloys and to help in the practical realization of forged products. The basics of magnesium forging practice are described and possible problems as well as material properties are discussed.
  • 1.9K
  • 10 Nov 2020
Topic Review
Magnesium Bioabsorbable Materials Based on Reinforced Polymeric Matrices
Improvements in Tissue Engineering and Regenerative Medicine (TERM)–type technologies have allowed the development of specific materials that, together with a better understanding of bone tissue structure, have provided new pathways to obtain biomaterials for bone tissue regeneration.
  • 246
  • 27 Dec 2023
Topic Review
Magnesia as Alternative Binder
Magnesia, or Magnesium oxide (MgO),  is a white hygroscopic solid mineral that occurs naturally as periclase and is a source of magnesium. It has an empirical formula of MgO and consists of a lattice of Mg2+ ions and O2− ions held together by ionic bonding. Magnesia is mainly produced by the calcination of magnesium carbonate. Calcining at different temperatures produces magnesia of different reactivity. The use of reactive MgO as binder in cementitious materials has its advantages and disadvantages.
  • 1.7K
  • 11 Nov 2020
Topic Review
Macrolides
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions.
  • 928
  • 03 Jun 2021
Topic Review
Macroion Layers/Complexes in Growth Factor Delivery
Macroion assemblies form an efficient scaffold for GF adsorption. Such assemblies enable the targeted delivery of these proteins without losing their activity. Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
  • 405
  • 18 Apr 2023
Topic Review
Macrocyclic Receptors
An important direction in the design of tetrapyrrole macrocyclic receptors for a certain substrate type is modification of the macrocycle periphery with bulky substituents or molecular fragments of different natures. Bulky highly-branched lateral substituents are capable of forming additional complexing cavities that can be used for identification and selective binding of substrates of a certain type.
  • 755
  • 14 Sep 2021
  • Page
  • of
  • 467
ScholarVision Creations