Topic Review
Microencapsulation of Probiotics
Probiotics are defined by the Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO) as “living microorganisms which, when ingested in certain amounts, provide health benefits to the host”.
  • 894
  • 01 Nov 2020
Topic Review
Microemulsion Design for Acne Therapy
Acne represents a dermatologic condition with a high prevalence, being characterized by a complex pathogenesis. Its high recurrence frequently encountered in clinical practice will affect the patient’s quality of life. Most of the treatment algorithms require at least one topical formulation, being recommended to be applied on affected areas for a long period. To treat such a versatile skin condition, smart topical vehicles capable of entrap anti-acne compounds can be considered a good option, compared with conventional systems generally used at the moment. In this direction, microemulsions are appreciated for their superior profile in matters of drug delivery, especially for challenging substances with hydrophilic or lipophilic patterns. Designed as transparent and thermodynamically stable systems, with a small number of key ingredients, microemulsion-based formulations were characterized in the present review as unique structures able to pass the skin barrier and sustain a targeted therapy in acne pathology.
  • 3.1K
  • 30 Nov 2020
Topic Review
Microelectronics for E-Textile
Modern electronic textiles are moving towards flexible wearable textiles, so-called e-textiles that have micro-electronic elements embedded onto the textile fabric that can be used for varied classes of functionalities. There are different methods of integrating rigid microelectronic components into/onto textiles for the development of smart textiles, which include, but are not limited to, physical, mechanical, and chemical approaches. The integration systems must satisfy being flexible, lightweight, stretchable, and washable to offer a superior usability, comfortability, and non-intrusiveness. Furthermore, the resulting wearable garment needs to be breathable.
  • 1.2K
  • 17 Sep 2021
Topic Review
Microcellular Injection Moulding
Microcellular injection moulding (MuCell®) is a polymer processing technology that uses a supercritical fluid inert gas, CO2 or N2, to produce light-weight products. Due to environmental pressures and the requirement of light-weight parts with good mechanical properties, this technology recently gained significant attention. However, poor surface appearance and limited mechanical properties still prevent the wide applications of this technique.
  • 854
  • 16 Aug 2021
Topic Review
Microbubbles Based Drug Delivery Systems
The blood-brain barrier (BBB) is one of the most selective endothelial barriers that protect the brain and maintains homeostasis in neural microenvironments. This barrier restricts the passage of molecules into the brain, except for gaseous or extremely small hydrophobic molecules. Thus, the BBB hinders the delivery of drugs with large molecular weights for the treatment of brain cancers. Various methods have been used to deliver drugs to the brain by circumventing the BBB; however, they have limitations such as drug diversity and low delivery efficiency. To overcome this challenge, microbubbles (MBs)-based drug delivery systems have garnered a lot of interest in recent years. MBs are widely used as contrast agents and are recently being researched as a vehicle for delivering drugs, proteins, and gene complexes. The MBs are 1–10 μm in size and consist of a gas core and an organic shell, which cause physical changes, such as bubble expansion, contraction, vibration, and collapse, in response to ultrasound.
  • 514
  • 20 Apr 2023
Topic Review
Microbially-Induced Desaturation and Carbonate Precipitation
Microbially induced carbonate precipitation (MICP) has been proposed as a sustainable approach to solve various environmental, structural, geotechnical and architectural issues. In the last decade, a ubiquitous microbial metabolism, nitrate reduction (also known as denitrification) got attention in MICP research due to its unique added benefits such as simultaneous corrosion inhibition in concrete and desaturation of porous media. The latter even upgraded MICP into a more advanced concept called microbially induced desaturation and precipitation (MIDP) which is being investigated for liquefaction mitigation.
  • 1.1K
  • 01 Sep 2021
Topic Review
Microbial Surfactants: Sustainable Class of Versatile Molecules
Microbial Surfactants are the class of surfactants produced by microbes like bacteria, fungi or yeast. Due to their easy biodegradability, and less toxicity, this class is gaining huge interests of scientists, researchers, environmentalists and industrialists. Current article throws some light on the introduction and classification of microbial surfactants. Some properties og microbial surfactants has also been discussed in the same. Industrial Applications of Microbial surfactants will be discussed below.
  • 508
  • 31 Jan 2023
Topic Review
Microbial PolyHydroxyAlkanoate Biopolymers
PolyHydroxyAlkanoates (PHAs) fulfil every criterion set out in the definition of a natural polymer or a biopolymer. PHA biopolymers, a group of biopolyesters, are found in nature, and they are biosynthesized using renewable carbon in microbes. PHAs are biodegradable, because nature has the tools to convert them into CO2 and water and about 10% organic fertilizer or humus, the same as in the biodegradation of cellulose or cotton.
  • 1.8K
  • 07 Aug 2023
Topic Review
Microbial Natural Products with Wound-Healing Properties
Wound healing continues to pose a challenge in clinical settings. Moreover, wound management must be performed properly and efficiently. Acute wound healing involves multiple cell divisions, a new extracellular matrix, and the process of formation, such as growth factors and cytokines, which are released at the site of the wound to regulate the process. Any changes that disrupt the healing process could cause tissue damage and prolong the healing process. Various factors, such as microbial infection, oxidation, and inflammation, can delay wound healing. In order to counter these problems, utilizing natural products with wound-healing effects has been reported to promote this process. A natural product with medicinal properties, which contribute to alleviating these factors, can facilitate the wound-healing process and be developed as a future drug. Numerous research has investigated the wound-healing properties of natural products that contain antioxidant, anti-inflammatory, collagen promotion, and antibacterial properties. Various phytochemicals, including alkaloids, tannins, flavonoids, terpenoids, phenolic, essential oils, and saponin compounds, may contribute to the medicinal effects. Natural products, including phytochemicals, play an important role in wound healing due to these properties. 
  • 451
  • 17 Jan 2023
Topic Review
Microbial Degradation of Rubber: Actinobacteria
Rubber is an essential part of our daily lives with thousands of rubber-based products being made and used. Natural rubber undergoes chemical processes and structural modifications, while synthetic rubber, mainly synthetized from petroleum by-products are difficult to degrade safely and sustainably. The most prominent group of biological rubber degraders are Actinobacteria. Rubber degrading Actinobacteria contain rubber degrading genes or rubber oxygenase known as latex clearing protein (lcp). Rubber is a polymer consisting of isoprene, each containing one double bond. The degradation of rubber first takes place when lcp enzyme cleaves the isoprene double bond, breaking them down into the sole carbon and energy source to be utilized by the bacteria. Actinobacteria grow in diverse environments, and lcp gene containing strains have been detected from various sources including soil, water, human, animal, and plant samples. 
  • 1.4K
  • 23 Jun 2021
  • Page
  • of
  • 467
ScholarVision Creations