Topic Review
Microwave Radiation on the Solid Ceramic Brick
Microwave radiation is widely utilized in construction practice, especially for drying building materials, remediating damp masonry, or sterilization of biotic pests that have infested building structures. The available scientific and technical literature reports that certain materials exposed to microwave radiation do not change their physical and mechanical properties, although this has not yet been adequately verified. 
  • 272
  • 27 Oct 2023
Topic Review
Microstructure Formation and Processing Features of Non-Alloy Steels
The properties of structural steel during processing are influenced by various structural components, including equilibrium structures, which include austenite and pearlite, as well as non-equilibrium structures like martensite, residual austenite, sorbite, and troostite. The formation of these structures is determined by factors that include temperature, alloy composition, and cooling medium.
  • 584
  • 28 Aug 2023
Topic Review
Microplastics Invading Human Organs and Bodily Fluids Systems
Microplastics (MPs), small plastic particles resulting from the degradation of larger plastic items and from primary sources such as textiles, engineered plastic pellets, etc., have become a ubiquitous environmental pollutant. As their prevalence in the natural environment grows, concerns about their potential impacts on human health have escalated.
  • 344
  • 20 Nov 2023
Topic Review
Microplastics Derived from Food Packaging Waste
Plastics are commonly used for packaging in the food industry. The most popular thermoplastic materials that have found such applications are polyethylene (PE), polypropylene (PP), poly(ethylene terephthalate) (PET), and polystyrene (PS). Unfortunately, most plastic packaging is disposable. As a consequence, significant amounts of waste are generated, entering the environment, and undergoing degradation processes. They can occur under the influence of mechanical forces, temperature, light, chemical, and biological factors. These factors can present synergistic or antagonistic effects. As a result of their action, microplastics are formed, which can undergo further fragmentation and decomposition into small-molecule compounds. During the degradation process, various additives used at the plastics’ processing stage can also be released. Both microplastics and additives can negatively affect human and animal health.
  • 487
  • 29 Jan 2023
Topic Review
Microorganisms Characterization in Cultural Heritage
Cultural heritage objects constitute a very diverse environment, inhabited by various bacteria and fungi. The impact of these microorganisms on the degradation of artworks is undeniable, but at the same time, some of them may be applied for the efficient biotreatment of cultural heritage assets. Interventions with microorganisms have been proven to be useful in restoration of artworks, when classical chemical and mechanical methods fail or produce poor or short-term effects. The path to understanding the impact of microbes on historical objects relies mostly on multidisciplinary approaches, combining novel meta-omic technologies with classical cultivation experiments, and physico-chemical characterization of artworks.
  • 1.1K
  • 12 Jan 2021
Topic Review
Microneedles in Drug Delivery
In recent years, an innovative transdermal delivery technology has attracted great interest for its ability to distribute therapeutics and cosmeceuticals for several applications, including vaccines, drugs, and biomolecules for skin-related problems. The advantages of microneedle patch technology have been extensively evaluated in the latest literature; hence, the academic publications in this area are rising exponentially. 
  • 821
  • 29 Mar 2022
Topic Review
Microneedle-mediated protein delivery
Microneedle (MN) patches, consisting of micro/miniature-sized needles, are a promising tool to perforate the stratum corneum and to release drugs and proteins into the dermis following a non-invasive route. 
  • 1.4K
  • 28 Oct 2020
Topic Review
Micromechanical Modeling of Nanoporous Metals
Nanoporous metals are characterized by a complex bicontinuous structure, which is similar to open pore foams but typically has a higher relative density. Micromechanical modeling of nanoporous metals consists of the modeling of the complex microstructure and, based on this structural input, the simulation of the mechanical behavior by numerical methods using Molecular Dynamics, Finite Element Methods, or Finite Cell Methods. The microstructure is usually obtained from 3D high-resolution imaging techniques and subsequent image processing. Alternatively, artificial microstructures with sufficient similarity to nanoporous metals can be generated by computational methods. The investigated volume is limited to a Representative Volume Element (RVE), which is small enough for achieving an elastic or elastic-plastic simulation on a computer, but large enough to deliver a reliable result, which is not any more affected by the randomness of individual features within the modeled volume of material and the boundary conditions applied to the RVE. The mechanical simulation predicts the macroscopic deformation behavior that is required to determine the Young's modulus, stress-strain curve as well as further detailed information on defect generation, deformation mechanisms, local stress and strain fields, etc. On the macroscopic level, structural descriptors are combined with predicted mechanical properties to establish structure-properties relationships.
  • 506
  • 02 May 2021
Topic Review
Microgels for Enhanced Oil Recovery
In todays’ world, there is an increasing number of mature oil fields every year, a phenomenon that is leading to the development of more elegant enhanced oil recovery (EOR) technologies that are potentially effective for reservoir profile modification. The technology of conformance control using crosslinked microgels is one the newest trends that is gaining momentum every year. This is due to the simplicity of the treatment process and its management, as well as the guaranteed effect in the case of the correct well candidate selection.
  • 328
  • 28 Feb 2022
Topic Review
Microfluidics to Study Membrane Filtration
Membrane filtration processes are best known for their application in the water, oil, and gas sectors, but also in food production they play an eminent role. Filtration processes are known to suffer from a decrease in efficiency in time due to e.g., particle deposition, also known as fouling and pore blocking. Although these processes are not very well understood at a small scale, smart engineering approaches have been used to keep membrane processes running. Microfluidic devices have been increasingly applied to study membrane filtration processes and accommodate observation and understanding of the filtration process at different scales, from nanometer to millimeter and more. In combination with microscopes and high-speed imaging, microfluidic devices allow real time observation of filtration processes.
  • 884
  • 24 Nov 2020
  • Page
  • of
  • 467
ScholarVision Creations