Topic Review
Potential Energy of Protein
In the context of chemistry and molecular modelling, a force field is a computational method that is used to estimate the forces between atoms within molecules and also between molecules. More precisely, the force field refers to the functional form and parameter sets used to calculate the potential energy of a system of atoms or coarse-grained particles in molecular mechanics, molecular dynamics, or Monte Carlo simulations. The parameters for a chosen energy function may be derived from experiments in physics and chemistry, calculations in quantum mechanics, or both. Force fields are interatomic potentials and utilize the same concept as force fields in classical physics, with the difference that the force field parameters in chemistry describe the energy landscape, from which the acting forces on every particle are derived as a gradient of the potential energy with respect to the particle coordinates. All-atom force fields provide parameters for every type of atom in a system, including hydrogen, while united-atom interatomic potentials treat the hydrogen and carbon atoms in methyl groups and methylene bridges as one interaction center. Coarse-grained potentials, which are often used in long-time simulations of macromolecules such as proteins, nucleic acids, and multi-component complexes, sacrifice chemical details for higher computing efficiency.
  • 2.0K
  • 23 Nov 2022
Topic Review
Thermochromic Smart Windows Assisted by Photothermal Nanomaterials
Thermochromic smart windows are optical devices that can regulate their optical properties actively in response to external temperature changes. Due to their simple structures and as they do not require other additional energy supply devices, they have great potential in building energy-saving.
  • 495
  • 23 Nov 2022
Topic Review
Metallacarbaboranes
Metallacarbaboranes (or metallacarboranes) are compounds that contain cluster polyhedra comprising carbon, boron, and metal atoms in various combinations. Most of the structures of metallacarbaborane clusters derive from triangular-faced polyhedra. The most numerous examples are icosahedral and pentagonal bipyramidal cages.
  • 251
  • 23 Nov 2022
Topic Review
Ground Deicing of Aircraft
Ground deicing of aircraft is commonly performed in both commercial and general aviation. The fluids used in this operation are called deicing or anti-icing fluids. The initials ADF (Aircraft Deicing Fluid), ADAF (Aircraft Deicer and Anti-icer Fluid) or AAF (Aircraft Anti-icing Fluid) are commonly used.
  • 709
  • 23 Nov 2022
Topic Review
Water-Gas Shift Reaction
The water-gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized. Before the early 20th century, hydrogen was obtained by reacting steam under high pressure with iron to produce iron, iron oxide and hydrogen. With the development of industrial processes that required hydrogen, such as the Haber–Bosch ammonia synthesis, a less expensive and more efficient method of hydrogen production was needed. As a resolution to this problem, the WGSR was combined with the gasification of coal to produce a pure hydrogen product. As the idea of hydrogen economy gains popularity, the focus on hydrogen as a replacement fuel source for hydrocarbons is increasing.
  • 4.9K
  • 22 Nov 2022
Topic Review
Bioactive Polymers via the Biginelli Reaction
Multicomponent reactions (MCRs) have been used to prepare polymers with appealing functions. The Biginelli reaction, one of the oldest and most famous MCRs, has sparked new scientific discoveries in polymer chemistry since 2013. The applications of the Biginelli reaction in developing functional polymers are mainly focusing on polymers that can be used in the biomedical area as antioxidants, anticancer agents, and bioimaging probes.
  • 507
  • 22 Nov 2022
Topic Review
Dynamic Nuclear Polarisation
Dynamic nuclear polarization (DNP) results from transferring spin polarization from electrons to nuclei, thereby aligning the nuclear spins to the extent that electron spins are aligned. Note that the alignment of electron spins at a given magnetic field and temperature is described by the Boltzmann distribution under the thermal equilibrium. It is also possible that those electrons are aligned to a higher degree of order by other preparations of electron spin order such as: chemical reactions (leading to Chemical-Induced DNP, CIDNP), optical pumping and spin injection. DNP is considered one of several techniques for hyperpolarization. DNP can also be induced using unpaired electrons produced by radiation damage in solids. When electron spin polarization deviates from its thermal equilibrium value, polarization transfers between electrons and nuclei can occur spontaneously through electron-nuclear cross relaxation and/or spin-state mixing among electrons and nuclei. For example, the polarization transfer is spontaneous after a homolysis chemical reaction. On the other hand, when the electron spin system is in a thermal equilibrium, the polarization transfer requires continuous microwave irradiation at a frequency close to the corresponding electron paramagnetic resonance (EPR) frequency. In particular, mechanisms for the microwave-driven DNP processes are categorized into the Overhauser effect (OE), the solid-effect (SE), the cross-effect (CE) and thermal-mixing (TM). The first DNP experiments were performed in the early 1950s at low magnetic fields but until recently the technique was of limited applicability for high-frequency, high-field NMR spectroscopy, because of the lack of microwave (or terahertz) sources operating at the appropriate frequency. Today such sources are available as turn-key instruments, making DNP a valuable and indispensable method especially in the field of structure determination by high-resolution solid-state NMR spectroscopy.
  • 488
  • 22 Nov 2022
Topic Review
Toughening Approaches of Recycled Polystyrene
Several environmental and techno-economic assessments highlighted the advantage of placing polystyrene-based materials in a circular loop, from production to waste generation to product refabrication, either following the mechanical or thermochemical routes.
  • 1.1K
  • 22 Nov 2022
Topic Review
Neutralization
In chemistry, neutralization or neutralisation (see spelling differences) is a chemical reaction in which acid and a base react quantitatively with each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution. The pH of the neutralized solution depends on the acid strength of the reactants.
  • 1.4K
  • 22 Nov 2022
Topic Review
6061 Aluminium Alloy
6061 (Unified Numbering System (UNS) designation A96061) is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded (second in popularity only to 6063). It is one of the most common alloys of aluminum for general-purpose use. It is commonly available in pre-tempered grades such as 6061-O (annealed), tempered grades such as 6061-T6 (solutionized and artificially aged) and 6061-T651 (solutionized, stress-relieved stretched and artificially aged).
  • 10.1K
  • 22 Nov 2022
  • Page
  • of
  • 467
ScholarVision Creations