Topic Review
Magnetic Field Assisted Heat Treatment of Metallic Materials
Utilizing electromagnetic stirring technology, the magnetic field achieved significant advancements that improved the microstructure and characteristics of the metal solidification process. It gradually regulates the direction of the microstructure and properties of the solid metal material development, mainly reflected in magnetic field-assisted metal material heat treatment.
  • 596
  • 29 Nov 2022
Topic Review
Engineering Nicotinamide Cofactors for Continuous-Flow Biocatalysis
Nicotinamide cofactors represent the most common low-potential redox cofactor used in biocatalysis. Although a promising approach, cofactor immobilization depends on the chemical modification of the cofactor to enable the formation of a covalent bond between the cofactor and its flexible linker. The chemical modification of NAD(P)+/NAD(P)H remains challenging, and the major routes used to achieve it are reviewed herein.
  • 542
  • 29 Nov 2022
Topic Review
Unbibium
Unbibium /uːnˈbɪbiəm/, also known as eka-thorium or simply element 122, is the currently hypothetical chemical element in the periodic table with the placeholder symbol of Ubb and atomic number 122. Unbibium and Ubb are the temporary systematic IUPAC name and symbol respectively, until a permanent name is decided upon. In the periodic table of the elements, it is expected to follow unbiunium as the second element of the superactinides, or the g-block and the fourth element of the 8th period. It has attracted recent attention, for similarly to unbiunium, it is expected to fall within the range of the island of stability. Despite many attempts, unbibium has not yet been synthesized, and therefore no natural isotopes have been found to exist. It is currently predicted that it has a g-orbital, the second element of which to have such besides unbiunium, which also has yet to be synthesized. It will most likely require nuclear fission to be produced artificially. In 2008, it was claimed to have been discovered in natural thorium samples but that claim has now been dismissed by recent repetitions of the experiment using more accurate techniques.
  • 3.2K
  • 29 Nov 2022
Topic Review
Application of Supercritical Fluids in COVID-19
Even though years have passed since the emergence of COVID-19, the research for novel or repositioned medicines from a natural source or chemically synthesized is still an unmet clinical need. There are three main applications of the supercritical fluids in this field: (i) drug micronization, (ii) supercritical fluid extraction of bioactives and (iii) sterilization. The supercritical fluids micronization techniques can help to improve the aqueous solubility and oral bioavailability of drugs, and consequently, the need for lower doses to elicit the same pharmacological effects can result in the reduction in the dose administered and adverse effects. In addition, micronization between 1 and 5 µm can aid in the manufacturing of pulmonary formulations to target the drug directly to the lung. Supercritical fluids also have enormous potential in the extraction of natural bioactive compounds, which have shown remarkable efficacy against COVID-19. Finally, the successful application of supercritical fluids in the inactivation of viruses opens up an opportunity for their application in drug sterilization and in the healthcare field.
  • 539
  • 29 Nov 2022
Topic Review
Applications of g-C3N4-Based Photocatalysts
The assembly of g-C3N4 with metal oxides is an effective strategy which can not only improve electron–hole separation efficiency by forming a polymer–inorganic heterojunction, but also compensate for the redox capabilities of g-C3N4 owing to the varied oxidation states of metal ions, enhancing its photocatalytic performance. Applications of g-C3N4-based materials in photocatalysis are discussed, including water splitting to generate H2 and O2, the degradation of pollutants, CO2 reduction and bacterial disinfection.
  • 1.1K
  • 29 Nov 2022
Topic Review
rGO@TiO2 Photocatalyst for Degradation of Organic Pollutants
The availability of clean water is essential for humans wellbeing and the diverse biotic population in the environment. Menkind imposes a significant pressure on food supplies, natural resources, and other commodities. Large-scale anthropogenic activities, such as agriculture and industry, which are practiced to ensure population growth and survival, have caused several harmful environmental effects, including the discharge of pollutants into the aquatic environment. rGO-based TiO2 material is commonly used in light-driven photocatalysis of dyes in an aqueous medium. Because of exceptional properties, rGO-based oxide semiconductors promote electron separation, which results in boosting photo-driven reactions such as the degradation of carcinogenic dyes (e.g., methylene blue) and solar-fuel (hydrogen) production. Preparation of rGO-based TiO2 photocatalysts increases the specific surface area of the nanocomposite, consequently increasing the photocatalytic activity, which is why rGO-based semiconductor photocatalysts have been found to be promising in several applications. 
  • 523
  • 29 Nov 2022
Topic Review
Deacetylation
Acetylation (or in IUPAC nomenclature ethanoylation) describes a reaction that introduces an acetyl functional group into a chemical compound. Deacetylation is the removal of an acetyl group. Acetylation refers to the process of introducing an acetyl group (resulting in an acetoxy group) into a compound, namely the substitution of an acetyl group for an active hydrogen atom. A reaction involving the replacement of the hydrogen atom of a hydroxyl group with an acetyl group (CH3CO) yields a specific ester, the acetate. Acetic anhydride is commonly used as an acetylating agent reacting with free hydroxyl groups. For example, it is used in the synthesis of aspirin, heroin, and THC-O-acetate.
  • 1.7K
  • 29 Nov 2022
Topic Review
Drug-Facilitated Sexual Assault
Drug-facilitated sexual assault (DFSA) is a sexual assault (rape or otherwise) carried out on a person after the person has become incapacitated due to being under the influence of any mind-altering substances, such as having consumed alcohol or been intentionally administered another date rape drug. The rape form of DFSA is also known as predator rape. 75% of all acquaintance rapes involve alcohol and/or drugs. Drugs, when used with alcohol, can result in a loss of consciousness and a loss of the ability to consent to sex. Researchers have found that alcohol-facilitated rape is the most common form of sexual violence against women. As with other types of rape, a DFSA is a crime of physical violence, and can be a result of sexual hedonism and entitlement. Most victims of DFSA are women and most perpetrators are men.
  • 528
  • 29 Nov 2022
Topic Review
Antimicrobial Properties of Plant Fibers
Healthcare-associated infections (HAI), or nosocomial infections, are a global health and economic problem in developed and developing countries, particularly for immunocompromised patients in their intensive care units (ICUs) and surgical site hospital areas. Recurrent pathogens in HAIs prevail over antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. For this reason, natural antibacterial mechanisms are a viable alternative for HAI treatment. Natural fibers can inhibit bacterial growth, which can be considered a great advantage in these applications.
  • 602
  • 29 Nov 2022
Topic Review
Sol-Gel Materials for Electrochemical Applications
Modified electrodes for sensors and supercapacitors as well as anti-corrosion are described. Sol-gel synthesis expands the capabilities of technologists to obtain highly porous, homogeneous, and hybrid thin-film materials for supercapacitor electrode application. The widespread materials are transition metal oxides, but due to their low conductivity, they greatly impede the rate capability of electrochemical supercapacitors. The way to optimize their properties is the production of complex oxides or different composites. Among the new materials, a special place is occupied by perovskites and materials with an olivine-type structure, which can be easily obtained by the sol-gel method. The sol-gel coating process has demonstrated excellent chemical stability to advance the corrosion resistance of the various metal alloy substrates. 
  • 419
  • 29 Nov 2022
  • Page
  • of
  • 467
ScholarVision Creations