Topic Review
Organocatalytic Cycloaddition and Cyclization Reactions
Atropisomeric molecules are present in many natural products, biologically active compounds, chiral ligands and catalysts. Many elegant methodologies have been developed to access axially chiral molecules. Among them, organocatalytic cycloaddition and cyclization have attracted much attention because they have been widely used in the asymmetric synthesis of biaryl/heterobiaryls atropisomers via construction of carbo- and hetero-cycles. This strategy has undoubtedly become and will continue to be a hot topic in the field of asymmetric synthesis and catalysis.
  • 303
  • 27 Jun 2023
Topic Review
Organobromine Flame Retardant Synergists
Organobromine flame retardants have been well-established for many years but because of environmental concerns have been under significant pressures to reduce their usage. However, these retardants are most always used in the presence of synergists, primarily those based on antimony compounds such as antimony III oxide, which also is associated with toxicological issues. This entry compares this with current available and potentially more environmentally sustainable synergists such as the zinc stannates and the more recently studied zinc tungstate, both of which also offer smoke suppressing properties.
  • 1.3K
  • 06 Nov 2020
Topic Review
Organoboron Compounds
The unique electron deficiency and coordination property of boron led to a wide range of applications in chemistry, energy research, materials science and the life sciences. The use of boron-containing compounds as pharmaceutical agents has a long history, and recent developments have produced encouraging strides. Boron agents have been used for both radiotherapy and chemotherapy. In radiotherapy, boron neutron capture therapy (BNCT) has been investigated to treat various types of tumors, such as glioblastoma multiforme (GBM) of brain, head and neck tumors, etc. Boron agents playing essential roles in such treatments and other well-established areas have been discussed elsewhere. Organoboron compounds used to treat various diseases besides tumor treatments through BNCT technology have also marked an important milestone. Following the clinical introduction of bortezomib as an anti-cancer agent, benzoxaborole drugs, tavaborole and crisaborole, have been approved for clinical use in the treatments of onychomycosis and atopic dermatitis. Some heterocyclic organoboron compounds represent potentially promising candidates for anti-infective drugs.
  • 995
  • 25 Jun 2021
Topic Review
Organic-Photovoltaics with Efficiency over 17%
When narrow band gap, non fullerene material Y6 or its derivatives are used as electron acceptors, the power conversion efficiency (PCE) of organic photovoltaic (OPV) has exceeded 18%. The PCE improvement of OPV is due to strong photon collection and low energy loss in the near-infrared range. At the same time, the ternary strategy is generally considered to be a convenient and effective means to improve the PCE of OPVs.
  • 1.2K
  • 26 Aug 2021
Topic Review
Organic Sensitizers for Indoor DSSC Applications
Among the emerging photovoltaic (PV) technologies, Dye-Sensitized Solar Cells (DSSCs) appear especially interesting in view of their potential for unconventional PV applications. In particular, DSSCs have been proven to provide excellent performances under indoor illumination, opening the way to their use in the field of low-power devices, such as wearable electronics and wireless sensor networks, including those relevant for application to the rapidly growing Internet of Things technology. Considering the low intensity of indoor light sources, efficient light capture constitutes a pivotal factor in optimizing cell efficiency. Consequently, the development of novel dyes exhibiting intense absorption within the visible range and light-harvesting properties well-matched with the emission spectra of the various light sources becomes indispensable.
  • 457
  • 06 Dec 2023
Topic Review
Organic Semiconducting Nanoparticles for Biosensor
Highly bio-compatible organic semiconductors are widely used as biosensors, but their long-term stability can be compromised due to photo-degradation and structural instability. To address this issue, scientists have developed organic semiconductor nanoparticles (OSNs) by incorporating organic semiconductors into a stable framework or self-assembled structure. OSNs have shown excellent performance and can be used as high-resolution biosensors in modern medical and biological research. They have been used for a wide range of applications, such as detecting small biological molecules, nucleic acids, and enzyme levels, as well as vascular imaging, tumor localization, and more. In particular, OSNs can simulate fine particulate matters (PM2.5, indicating particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) and can be used to study the biodistribution, clearance pathways, and health effects of such particles.
  • 312
  • 25 May 2023
Topic Review
Organic Piezoelectric Biomaterials
The past decade has witnessed significant advances in medically implantable and wearable devices technologies as a promising personal healthcare platform. Organic piezoelectric biomaterials have attracted widespread attention as the functional materials in the biomedical devices due to their advantages of excellent biocompatibility and environmental friendliness. Biomedical devices featuring the biocompatible piezoelectric materials involve energy harvesting devices, sensors, and scaffolds for cell and tissue engineering. This paper offers a comprehensive review of the principles, properties, and applications of organic piezoelectric biomaterials. How to tackle issues relating to the better integration of the organic piezoelectric biomaterials into the biomedical devices is discussed. Further developments in biocompatible piezoelectric materials can spark a new age in the field of biomedical technologies.
  • 1.8K
  • 30 Oct 2020
Topic Review
Organic Photorefractive Materials
Photorefractive materials are capable of reversibly changing their index of refraction upon illumination. That property allows them to dynamically record holograms, which is a key function for developing an updateable holographic 3D display. The transition from inorganic photorefractive crystals to organic polymers meant that large display screens could be made.
  • 498
  • 01 Dec 2021
Topic Review
Organic Photodetectors
Organic photodetectors (OPDs) have gained increasing interest as they offer cost-effective fabrication methods using solution processes and a tunable spectral response range, making them particularly attractive for large area image sensors on lightweight flexible substrates. Carrier blocking layers engineering is very important to the high performance of OPDs that can select a certain charge carriers (holes or electrons) to be collected and suppress another carrier. Carrier blocking layers of OPDs play a critical role in reducing dark current, boosting their efficiency and long-time stability.
  • 1.0K
  • 26 Jul 2021
Topic Review
Organic Peroxide
Organic peroxides are organic compounds containing the peroxide functional group (ROOR′). If the R′ is hydrogen, the compounds are called hydroperoxides, which are discussed in that article. Peresters are the peroxy analog of esters and have general structure RC(O)OOR. The O−O bond of peroxides easily breaks, producing free radicals of the form RO• (the dot represents an unpaired electron). Thus, organic peroxides are useful as initiators for some types of polymerisation, such as the epoxy resins used in glass-reinforced plastics. MEKP and benzoyl peroxide are commonly used for this purpose. However, the same property also means that organic peroxides can either intentionally or unintentionally initiate explosive polymerisation in materials with unsaturated chemical bonds, and this process has been used in explosives. Organic peroxides, like their inorganic counterparts, are powerful bleaching agents.
  • 1.5K
  • 31 Oct 2022
  • Page
  • of
  • 467
ScholarVision Creations