Topic Review Peer Reviewed
Porcelain Enamel Coatings
Porcelain enamel is an inorganic-type coating, which is applied to metals or glass for both decorative and functional purposes. This coating is a silica-based solidified glass mass obtained by high-temperature firing (temperature can range between 450 and 1200 °C depending on the substrate). Porcelain enamel coatings differ from ceramic coatings mainly by their glass structure and dilatation coefficient, and from organic paints mainly by the inorganic nature of the matrix and the chemical bond that exists between the coating and the substrate. 
  • 6.4K
  • 18 Apr 2022
Topic Review
Porcelain Enamel
Porcelain enamel is a glassy material deposited on a metallic substrate and fired at high temperatures (500-900 °C) to form a stable and permanent bond with it through chemical-physical reaction. This coating was developed in ancient times for decorative purposes and it was mainly used to embellish precious objects with colourful and glossy finishing as if to imitate the shining of precious stones. Only from 1760 enamelling of metal objects began to play a technical role. Nowadays vitreous enamel coatings are widely used and appreciated for high-duty technological applications, as they provide good corrosion protection of the covered substrates and they can withstand chemical attack, abrasion, and degradation caused by external agents, maintaining their aesthetical properties unchanged in time. This work is to introduce and describe the history of enamelling from ancient times to the modern era, revealing the glorious past of this material for decorative purposes and its use as a technical coating from the First Industrial Revolution onward. 
  • 1.5K
  • 27 Oct 2020
Topic Review
Polyvinylidene Fluoride-Graphene Oxide Membranes
In this study, polyvinylidene fluoride (PVDF)-graphene oxide (GO) membranes were obtained by employing triethyl phosphate (TEP) as a solvent. GO nanosheets were prepared and characterized in terms of scanning and transmission electron microscopy (SEM and TEM, respectively), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), chemical analysis and inductively coupled plasma mass spectroscopy (ICP).
  • 480
  • 18 May 2021
Topic Review
Polyvinyl Chloride in the Environment
Plastics have recently become an indispensable part of everyone’s daily life due to their versatility, durability, light weight, and low production costs. The increasing production and use of plastics poses great environmental problems due to their incomplete utilization, a very long period of biodegradation, and a negative impact on living organisms. Decomposing plastics lead to the formation of microplastics, which accumulate in the environment and living organisms, becoming part of the food chain. The contamination of soils and water with poly(vinyl chloride) (PVC) seriously threatens ecosystems around the world. Their durability and low weight make microplastic particles easily transported through water or air, ending up in the soil.
  • 671
  • 12 Jan 2024
Topic Review
Polyurethanes in Biomedicine
Due to their mechanical properties, ranging from flexible to hard materials, polyurethanes (PUs) have been widely used in many industrial and biomedical applications. PU characteristics, along with their biocompatibility, make them successful biomaterials in short and medium time applications.  The most important biomedical applications of PUs include antibacterial surfaces and catheters, blood oxygenators, dialysis devices, stents, cardiac valves, vascular prostheses, bioadhesives/surgical dressings/pressure sensitive adhesives, drug delivery systems, tissue engineering scaffolds and electrospinning, nerve generation, pacemaker lead insulation and coatings for breast implants. The diversity of polyurethane properties due to the ease of bulk and surface modification plays a vital role in their applications. 
  • 1.8K
  • 28 Oct 2020
Topic Review
Polyurethanes and Green Chemistry
Polyurethanes are most often called “green” when they contain natural, renewable additives in their network or chemical structure, such as mono- and polysaccharides, vegetable oils, polyphenols, or various compounds derived from agro-waste white biotechnology. The use of these natural substrates is in line with the principles of green chemistry. However, other principles among all 12 can also be used in the production of polyurethanes.
  • 810
  • 11 Nov 2021
Topic Review
Polyurethane
Polyurethane is widely considered as the biggest polymer product which is categorized under plastics. PUs belong to a group of elastomers that are linked to a urethane material with a distinctive feature of being hard and soft parts in the macromolecule. Plastic and modular construction industries produce big quantities of PU wastes in the fabrication process during either processing or utilization of materials.
  • 1.2K
  • 06 Aug 2021
Topic Review
Polyurea in Impact Penetration Resistance and Blast Mitigation
Polyurea has gained significant attention in recent years as a functional polymer material, specifically regarding blast and impact protection. The molecular structure of polyurea is characterized by the rapid reaction between isocyanate and the terminal amine component, and forms an elastomeric copolymer that enhances substrate protection against blast impact and fragmentation penetration. At the nanoscale, a phase-separated microstructure emerges, with dispersed hard segment microregions within a continuous matrix of soft segments. This unique microstructure contributes to the remarkable mechanical properties of polyurea. 
  • 514
  • 11 Mar 2024
Topic Review
Polyurea for Blast and Impact Protection
Polyurea has attracted extensive attention from researchers and engineers in the field of blast and impact protection due to its excellent quasi-static mechanical properties and dynamic mechanical properties. Its mechanical properties and energy absorption capacity have been tuned by means of formulation optimization, molecular dynamics (MD) simulation and the addition of reinforcing materials. Owing to the special molecular structure of polyurea, the mechanism of polyurea protection against blasts and impacts is the simultaneous effect of multiple properties. For different substrates and structures, polyurea needs to provide different performance characteristics, including adhesion, hardness, breaking elongation, etc., depending on the characteristics of the load to which it is subjected. 
  • 737
  • 11 Jul 2022
Topic Review
Polyurea Aerogels
The term “aerogel” describes a certain class of low-density solid materials with a high open porosity. Aerogels can be considered to be a subclass of the much broader domain of porous materials; however, they are distinguished from, for example, blown foams, because they are prepared in a completely different manner—namely, by drying wet gels in a way that preserves nearly all of their volume in the final dry form.
  • 689
  • 02 Apr 2022
  • Page
  • of
  • 467
ScholarVision Creations