Topic Review
Nanomaterials from Industrial, Biological Activities
Nanotechnology and nanoparticles are found to be very effective because of their unique chemical and physical properties and high surface area, but their high cost is one of the major hurdles to its wider application. So, the synthesis of nanomaterials, especially 2D nanomaterials from industrial, agricultural, and other biological activities, could provide a cost-effective technique. The nanomaterials synthesized from such waste not only minimize pollution, but also provide an eco-friendly approach towards the utilization of the waste.
  • 1.4K
  • 23 Jun 2021
Topic Review
Solution-Processed Organic Phototransistors and Their Recent Developments
Today, more disciplines are intercepting each other, giving rise to “cross-disciplinary” research. Technological advancements in material science and device structure and production have paved the way towards development of new classes of multi-purpose sensory devices. Organic phototransistors (OPTs) are photo-activated sensors based on organic field-effect transistors that convert incident light signals into electrical signals. The organic semiconductor (OSC) layer and three-electrode structure of an OPT offer great advantages for light detection compared to conventional photodetectors and photodiodes, due to their signal amplification and noise reduction characteristics. Solution processing of the active layer enables mass production of OPT devices at significantly reduced cost. The chemical structure of OSCs can be modified accordingly to fulfil detection at various wavelengths for different purposes. Organic phototransistors have attracted substantial interest in a variety of fields, namely biomedical, medical diagnostics, healthcare, energy, security, and environmental monitoring. Lightweight and mechanically flexible and wearable OPTs are suitable alternatives not only at clinical levels but also for point-of-care and home-assisted usage.
  • 1.4K
  • 27 Jan 2022
Topic Review
MOFs for Mercury Detection
The advantages of metal organic frameworks (MOFs) are: existence of porosity to adsorb specific analyte, improved aqueous solubility, exceptional photophysical and chemical properties. MOFs are noted as exceptional candidates towards the detection and removal of specific analytes, particular for the detection/removal of environmental contaminants, such as heavy metal ions, toxic anions, hazardous gases, explosives, etc. Among heavy metal ions, mercury has been noted as a global hazard because of its high toxicity in the elemental (Hg0), divalent cationic (Hg2+), and methyl mercury (CH3Hg+) forms. To secure the environment and living organisms, many countries have imposed stringent regulations to monitor mercury at all costs. Regarding the detection/removal requirements of mercury, researchers have proposed and reported all kinds of MOFs-based luminescent/non-luminescent probes towards mercury.This review provides valuable information about the MOFs which have been engaged in detection and removal of elemental mercury and Hg2+ ions. Moreover, the involved mechanisms or adsorption isotherms related to sensors or removal studies are clarified for the readers. Finally, advantages and limitations of MOFs in mercury detection/removal are described together with future scopes.
  • 1.4K
  • 01 Jul 2021
Topic Review
Neutralization
In chemistry, neutralization or neutralisation (see spelling differences) is a chemical reaction in which acid and a base react quantitatively with each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution. The pH of the neutralized solution depends on the acid strength of the reactants.
  • 1.4K
  • 22 Nov 2022
Topic Review
Biodegradable Packaging Materials
Food packaging is used to protect food products from physical, chemical, or biological stresses in their environment, thereby improving their quality and extending their shelf life. A variety of packaging materials have traditionally been used for this purpose, including plastic, glass, metal, paper, wood, and textiles. Some of these materials, particularly plastics, cause considerable environmental damage during their manufacture and after their disposal. For0 this reason, there has been great interest in developing biodegradable forms of packaging materials that are more sustainable to produce, that rapidly decompose after disposal, and that do not cause as much environmental pollution. These packaging materials can be constructed from biodegradable film-forming materials such as proteins, polysaccharides, and lipids. Moreover, their functional performance can be enhanced by incorporating organic or inorganic nanoparticles or nanofibers. For instance, nano-forms of clay, iron oxide (Fe2O3), titanium dioxide (TiO2), silver (Ag) and zinc oxide (ZnO) can be used (inorganic nanoparticles), as well as nano-forms of chitin and cellulose and their derivatives (organic nanoparticles). The resulting nanocomposites often have enhanced technofunctional characteristics such as improved optical, mechanical and barrier properties, as well as some novel functional attributes, such as antimicrobial and antioxidant activities, that can prolong the shelf life of packaged foods. Moreover, it is possible to incorporate sensing materials into biodegradable films to provide information about the quality, freshness, or safety of packaged foods. 
  • 1.4K
  • 30 Jun 2021
Topic Review
Direct Amidations of Carboxylic Acids with Amines
The prevalence of amides in biological systems and chemical fields such as polymers, materials and natural products drives continuous research on novel procedures to obtain these ubiquitous functional groups. Efforts to this purpose are mainly focused around the discovery of direct and catalytic methods that are more atom economic, safe and practical for diversified applications (e.g., organic, medicinal and peptide chemistries, material and polymer purposes, etc.), in accordance with green chemistry principles. 
  • 1.4K
  • 22 Feb 2023
Topic Review
Beta Lactams and Products
Discovery and synthesis of penicillin and other beta-lactam antibiotics have received sustained attention. The use of β-lactam antibiotics is extensively documented in several thousand of publications. In modern times, microwave-induced reactions are also used extensively for the synthesis and stereochemical studies of diverse β-lactams. In this paper, the author describes a few crucial reactions that are performed toward the synthesis of β-lactams and products obtained from them under classical conditions as well as by domestic or automated microwave oven.
  • 1.4K
  • 28 Oct 2020
Topic Review
Photocathode Materials
Photoelectrochemical water splitting is a promising approach to sustainable hydrogen production with no carbon emissions. Hydrogen being a future fuel to coming human generations is of utmost importance. The photocathodes in a photoelectrochemical (PEC) water-splitting cell are essential for the direct evolution of hydrogen. Among the known photocathodes, Cu-based p-type semiconducting materials are the most promising photo-absorber materials owing to their low-cost, low toxicity, natural abundance, suitable band-gaps, and favorable band edges for reduction. 
  • 1.4K
  • 08 Nov 2022
Topic Review
Gilsonite-Modified Bitumen
Hot mix asphalt has various benefits such as good workability and durability. It is one of the most general materials used as asphalt mixtures in road pavements. Asphalt mixtures and binders can be improved by modifying them with various additives. Gilsonite is a natural asphalt hydrocarbon which may be used as an additive to hot mix asphalt. It is used as an asphalt binder modifier (wet process) and an asphalt mixture modifier (dry process) to improve the properties of the mix. It provides the option of improved rheological properties, stability, strength rutting resistance and moisture sensitivity. 
  • 1.4K
  • 16 Jun 2021
Topic Review
Fluorinated BODIPY Dyes
The synthesis of fluorine-containing small molecules has had numerous benefits of improving the quality and efficiency of many applications of these compounds. Compounds such as derivatives of boron-dipyrromethene (BODIPY) typically demonstrate signal wavelengths around 500 nm and 600 nm; however, it is more favorable to see these signals closer to 700 nm to improve fluorophore applications. For this reason, recent studies described further in the text demonstrate the applications of adding fluorine-based substituents and phenyl rings to the chemical designs, thus redshifting absorption and fluorescence wavelengths.
  • 1.4K
  • 30 Mar 2021
  • Page
  • of
  • 467
ScholarVision Creations