Topic Review
Cell Penetrating Peptides
Cell-penetrating peptides (CPPs) are peptides that can directly adapt to cell membranes and then permeate into cells. They are usually cationic for the electronic interactions between CPPs and anionic cell membrane. Meanwhile, some of them can target a specific protein at the same time. In nanomedicine, as an element, CPPs are usually covalently linked to the surface of nanocarriers to endow their permeability to the whole system.
  • 662
  • 14 Dec 2021
Topic Review
Graphene: From Fabrication to Applications
In the new era of modern flexible and bendable technology, graphene-based materials have attracted tremendous attention. The excellent electrical, mechanical, and optical properties of graphene as well as the ease of functionalization of its derivates enable graphene to become an attractive candidate in the construction of flexible devices.
  • 662
  • 16 Feb 2022
Topic Review
Chitosan-Based Polymer and Steel Slag Aggregates
Steel slag, a by-product of the steel industry, is generated in the form of an aggregate, and has a particle size similar to that of natural aggregates. The chitosan-based polymer (CBP) was synthesized via an amide coupling reaction among chitosan, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, and 3-(3,4-dihydroxyphenyl)propionic acid.
  • 662
  • 28 Feb 2022
Topic Review
Printing Methods to Fabricate Receptor Layers of Gas Sensors
Printing technologies are nowadays an integral element of contemporary materials science applied to development of low-cost gas sensors and multisensor arrays for many applications including a development of lab-on- chips. These protocols ensure automating of technological processes, a reproducibility of microstructural and functional characteristics with a reduced time necessary for the receptor material deposition over substrates. At the same time, using an accurate positioning system improves significantly the targeting of the substance, while the dosing setups allow to ensure a high control over the volume of discretely or continuously applied inks. The printing technologies enable forming planar receptor structures, even under a complex geometry, at various thicknesses and porosity with the required spatial resolution to be in nanometer micrometer ranges. Some methods, as dip-pen nanolithography, nano-imprinting lithography, and microcontact printing, are more suitable for discrete miniature devices with unique characteristics owing to the labor-intensive and multi-step procedures, while other ones, as ink-jet printing, aerosol jet printing or microextrusion printing, can be used quite easily in scaling the procedures to design gas sensors, including a rapid tuning of their geometric parameters without a necessity to prepare appropriate stencils and masks in advance. While designing the gas-sensor receptor materials, a great variety of printing technologies are used these days which vary both in the principle of operation and in such parameters as printing speed, spatial resolution, thickness of the formed coatings, and their microstructure, etc.
  • 662
  • 23 May 2022
Topic Review
Nanoparticles Used in X-Ray Photodynamic Therapy
Photodynamic therapy (PDT) has long been known as an effective method for treating surface cancer tissues. Deeper penetration of X-rays into tissues has been implemented, which is now known as X-ray photodynamic therapy (XPDT). The two methods differ in the photon energy used, thus requiring the use of different types of scintillating nanoparticles. These nanoparticles are known to convert the incident energy into the activation energy of a photosensitizer, which leads to the generation of reactive oxygen species.
  • 662
  • 08 Aug 2022
Topic Review
Miscanthus-Based Polymers
Carbon neutrality is a requisite for industrial development in modern times. The most efficient source of biomass is energy crops, and Miscanthus has been globally recognized as one of the most significant among them. Miscanthus is basically utilized for the production of heat and electric power, and it is actively displacing wood in papermaking and natural cellulose isolation technologies. However, the range of potential applications of Miscanthus is much broader.
  • 662
  • 16 Oct 2023
Topic Review
Sterilize Polylactic Acid
Sterilization is an important and problematic step that should be considered as early as possible in the design of any new medical device intended to be use in contact with sterile tissues, mucous membranes, or breached skin, in order to save money, time and trouble.
  • 661
  • 26 Jul 2021
Topic Review
Spicules-Based Topical Delivery Systems
Sponge spicules have recently been utilized as scattered microneedles to disrupt the skin barrier and enhance the skin penetration of a series of therapeutics and even nanoparticles. Spicules can physically disrupt skin in a dose-dependent manner and be retained within the skin over a long time, which provides a convenient, safe, and effective skin delivery strategy.
  • 661
  • 16 Dec 2021
Topic Review
Insights into the Pharmacological Effects of Flavonoids
Flavonoids are widely occurring secondary metabolites of plants. Currently, there is a trend of article numbers increasing, which focuses on the computer modeling of flavonoid interactions with biological targets. Such studies help to accumulatethe data on lead compounds that can find medicinal implementation, including COVID-19. Flavanonol taxifolin demonstrated wound-healing activity. Luteolin, apigenin, and wogonin, which can be classified as flavones, show induced neutrophil apoptosis and have potential as neutrophil apoptosis-inducing anti-inflammatory, proresolution agents.
  • 661
  • 10 Jun 2022
Topic Review
The Tetrahydrofuran Motif in Marine Lipids and Terpenes
Heterocycles are particularly common moieties within marine natural products. Specifically, tetrahydrofuranyl rings are present in a variety of compounds which present complex structures and interesting biological activities. Focusing on terpenoids, a high number of tetrahydrofuran-containing metabolites have been isolated. They show promising biological activities, making them potential leads for novel antibiotics, antikinetoplastid drugs, amoebicidal substances, or anticancer drugs. Thus, they have attracted the attention of the synthetics community and numerous approaches to their total syntheses have appeared.
  • 661
  • 28 Oct 2022
  • Page
  • of
  • 467
ScholarVision Creations