Topic Review
The Use of Collagen in Bone Tissue Engineering
Synthetic bone substitute materials (BSMs) are becoming the general trend of replacing autologous grafting for bone tissue engineering (BTE) in orthopedic research and clinical practice. As the main component of bone matrix, collagen type I has been playing a critical role in the construction of ideal synthetic BSMs for decades. Significant strides have been made in the field of collagen research, including the exploration of various collagen types, structure and sources, the optimization of preparation techniques, modification technologies, and the manufacture of various collagen-based materials. However, the poor mechanical properties, fast degradation, and lack of osteoconductive activity of collagen-based materials caused inefficient bone replacement and limited their translation into clinical reality. In the area of BTE, so far, attempts focused on the preparation of collagen-based biomimetic BSMs together with other inorganic materials and bioactive substances. By reviewing the approved products on the market, this manuscript updates the latest applications of collagen-based materials in bone regeneration and highlights the potential for further development in the field of BTE over the next ten years.
  • 776
  • 08 Mar 2023
Topic Review
The Rearrangement of Alkylallenes to 1,3-Dienes
1,3-Dienes are vital building blocks in organic synthesis. They underpin many fundamental synthetic transformations and are present in numerous natural products and drug candidate molecules.
  • 776
  • 19 Jan 2022
Topic Review
Chikungunya Virus
Arboviruses, in general, are a global threat due to their morbidity and mortality, which results in an important social and economic impact. Chikungunya virus (CHIKV), one of the most relevant arbovirus currently known, is a re-emergent virus that causes a disease named chikungunya fever, characterized by a severe arthralgia (joint pains) that can persist for several months or years in some individuals. Until now, no vaccine or specific antiviral drug is commercially available. Nitrogen heterocyclic scaffolds are found in medications, such as aristeromycin, favipiravir, fluorouracil, 6-azauridine, thioguanine, pyrimethamine, among others. New families of natural and synthetic nitrogen analogous compounds are reported to have significant anti-CHIKV effects. In the present work, we focus on these nitrogen-based heterocyclic compounds as an important class with CHIKV antiviral activity.
  • 775
  • 16 Jan 2021
Topic Review
Filled Polymers and DMA
Dynamic mechanical analysis (DMA) provides reliable information about the viscoelastic behavior of neat and filled polymers. The properties of filled polymers are relevant to different industries as protective organic coatings, composites etc. Interfacial interactions in filled polymers play an important role in determining their bulk properties and performance during service life. In this entry, studies which used DMA to characterize the interfacial interactions in filled polymers have been reviewed.
  • 775
  • 26 Apr 2021
Topic Review
Electrical Mode Gas Sensing
Among small organic molecules, perylene diimides (PDIs) are an important class of materials due to their outstanding thermal, chemical, electronic, and optical properties, all of which make them promising candidates for a wide range of organic electronic devices including sensors, organic solar cells, organic field-effect transistors, and organic light-emitting diodes. This is mainly due to their electron-withdrawing nature and significant charge transfer properties. Perylene-based sensors of this type show high sensing performance towards various analytes, particularly reducing gases like ammonia and hydrazine, but there are several issues that need to be addressed including the selectivity towards a specific gas, the effect of relative humidity, and operating temperature.
  • 775
  • 19 Feb 2021
Topic Review
Nanotechnology in Cosmetics
Nanomaterials are materials with a size ranging from 1 to 100 nm in at least one dimension. At the nanoscale, material properties become different. These unique properties can be exploited for a variety of applications, including the use of nanoparticles in skincare and cosmetics products. Cosmeceuticals is one of the fastest growing industries in terms of personal care, accompanied by an increase in nanocosmeceuticals research and applications.
  • 775
  • 27 Oct 2022
Topic Review
Carbon-Based Nanomolecules Interacting with Proteins
Scientists are designing new ways to combine proteins and carbon-based nanomomecules. We review strategies of selecting proteins able to interact with proteins and typical van der Waals interactions. Proteins and carbon based nanomomecules can form ordered clusters of hybrid materials and will guide new projects for bioimaging tools and tuning of intrinsically disordered proteins.
  • 774
  • 27 Oct 2020
Topic Review
Applications of Nanotechnology in Food & Cosmetics Preservation
Cosmetic and food products containing water are prone to contamination during the production, storage, and transit process, leading to product spoilage and degraded organoleptic characteristics. The efficient preservation of food and cosmetics is one of the most important issues the industry is facing today. The use of nanotechnology in food and cosmetics for preservation purposes offers the possibility to boost the activity of antimicrobial agents and/or promote their safer distribution into the end product upon incorporation into packaging or film constructions.
  • 773
  • 22 Apr 2022
Topic Review
Development Aspects for Practical Non-aqueous Redox-Flow Batteries
Redox-flow cells can be divided into four basic types: all-liquid redox-flow batteries (ALRFBs), semi-solid redox-flow batteries (SSRFBs), hybrid redox-flow batteries (HRFBs), and single-flow batteries (SFB). These four basic types can be further classified by their cell separation techniques and membrane setups. They range from having no separation membrane to having up to three separation membranes in parallel.
  • 773
  • 20 Feb 2023
Topic Review
Peptide Libraries with Antimicrobial Activity
Authors describe how by coupling emerging in silico and experimental tools it is possible to create novel peptide libraries with potential antimicrobial activity. This is in response to the growing public health concern pose by multiresistant microbial strains that take millions of lives annually on a global scale. The in silico tools include emerging artificial intelligence algorithms that allow searching for novel sequences in extremely large databases. Once identified, the required membrane activity can be estimated by looking at the interactions with model lipid bilayers via molecular dynamics (MD) simulations. Experimentally, the sequences can be expressed on the surface of yeasts by the surface display technology and subsequently screened in a high-throughput manner aided by microfluidic systems capable of separating out the most active peptides by precisely monitoring changes in optical properties in-line and real-time. 
  • 773
  • 24 May 2021
  • Page
  • of
  • 467
ScholarVision Creations