Topic Review
Particle Coatings on Magnetorheological Materials
Magnetorheological (MR) material is a type of magneto-sensitive smart materials which consists of magnetizable particles dispersed in a carrier medium. Throughout the years, coating on the surface of the magnetic particles has been developed by researchers to enhance the performance of MR materials, which include the improvement of sedimentation stability, enhancement of the interaction between the particles and matrix mediums, and improving rheological properties as well as providing extra protection against oxidative environments. There are a few coating methods that have been employed to graft the coating layer on the surface of the magnetic particles, such as atomic transfer radical polymerization (ATRP), chemical oxidative polymerization, and dispersion polymerization.
  • 913
  • 11 Dec 2020
Topic Review
Defect-Related Etch Pits on Crystals and Their Utilization
Etch pits could form on an exposed surface of a crystal when the crystal is exposed to an etching environment or chemicals. Due to different dissolution rates along various crystalline directions in a crystal, the dissolution process is anisotropic; hence, etch pits usually have a regular shape. The morphology, size, and density of etch pits can be affected by various factors, including the chemical composition of the etchant, etching time, etching temperature, status of the matrix, and so on. Traditionally, etch pits are utilized to evaluate the dislocation density and some defect-related properties. Now, in the modern fabrication industries, the relationship between etch pits and defects has been utilized more skillfully. High-quality crystals can be fabricated by controlling dislocations revealed by etch pits. Meanwhile, with the as-revealed dislocation as the diffusion path of atoms, new crystals will emerge in corresponding etch pits.
  • 913
  • 11 Nov 2022
Topic Review
Liquid Crystal Waveguide Structures
Liquid crystal materials can be used to make either a core, in which light beams can be confined, or a cladding of optical waveguides.
  • 913
  • 02 Nov 2021
Topic Review
Supramolecular Chemistry: Host–Guest Molecular Complexes
The host–guest (HG) interactions in two-dimensional (2D) permeable porous linkages are growing expeditiously due to their future applications in biocatalysis, separation technology, or nanoscale patterning. In host–guest (HG) interaction, distinctive structural complexes development occurs via non-covalent associations. There is a growing curiosity in executing supramolecular HG structures for assembling organic solvents and aqueous solutions on compact planes.
  • 913
  • 09 Jul 2021
Topic Review
Magnetic nanoparticles: coating and applications
Magnetic nanoparticles (MNPs) have great potential in material science, drug delivery, magnetic resonance imaging, and therapeutic applications. Indeed, a number of iron oxide nanoparticles have been withdrawn due to their poor clinical performance and/or toxicity issues. MNPs have successfully been converted into water-soluble, stable, bio-accessible systems using the proprietary various coating strategy. Herein, we summarize the data of applications and coating strategies of MNPs.
  • 913
  • 11 Jan 2022
Topic Review
Grapevine Cane Extracts
Grapevine canes are viticulture waste that is usually discarded without any further use. However, recent studies have shown that they contain significant concentrations of healthpromoting compounds, such as stilbenes, secondary metabolites of plants produced as a response to biotic and abiotic stress from fungal disease or dryness. Stilbenes have been associated with antioxidant, anti‐inflammatory, and anti‐microbial properties and they have been tested as potential treatments of cardiovascular and neurological diseases, and even cancer, with promising results. Stilbenes have been described in the different genus of the Vitaceae family, the Vitis genera being one of the most widely studied due to its important applications and economic impact around the world. This entry presents an in‐depth study of the composition and concentration of stilbenes in grapevine canes. The results show that the concentration of stilbenes in grapevine canes is highly influenced by the Vitis genus and cultivar aspects (growing conditions, ultraviolet radiation, fungal attack, etc.). Different methods for extracting stilbenes from grapevine canes have been reviewed, and the extraction conditions have also been studied, underlining the advantages and disadvantages of each technique. After the stilbenes were extracted, they were analyzed to determine the stilbene composition and concentration. Analytical techniques have been employed with this aim, in most cases using liquid chromatography, coupled with others such as mass spectrometry and/or nuclear magnetic resonance to achieve the individual quantification. Finally, stilbene extracts may be applied in multiple fields based on their properties. The five most relevant are preservative, antifungal, insecticide, and biostimulant applications. The current state‐of‐the‐art of the above applications and their prospects are discussed.
  • 913
  • 11 Sep 2020
Topic Review
Interstitial Atom Engineering
Interstitial light elements play an important role in magnetic materials. Especially, Mn-based compounds with interstitial atoms are important for the easy fabrication of highly functional magnetic devices.
  • 912
  • 11 Dec 2020
Topic Review
MoS2-Based Substrates for Surface-Enhanced Raman Scattering
Surface-enhanced Raman scattering (SERS), as an important tool for interface research, occupies a place in the field of molecular detection and analysis due to its extremely high detection sensitivity and fingerprint characteristics. Substantial efforts have been put into the improvement of the enhancement factor (EF) by way of modifying SERS substrates.
  • 912
  • 25 Mar 2022
Topic Review
Graphene-Based Nanocomposites
Graphene is an allotrope of carbon consisting of a single layer of atoms arranged in a two-dimensional honeycomb lattice. Carbon atoms are bonded with a covalent sp2bond with a single free electron, which accounts for the conductivity of graphene. Graphene is attracting great interests from the physical, chemical, and biomedical fields as a novel nanomaterial with exceptional physical properties, including extremely high thermal conductivity, excellent electrical conductivity, high surface-to-volume ratio, remarkable mechanical strength, and biocompatibility.
  • 912
  • 27 Jan 2022
Topic Review
Tetrasubstituted α-Aminophosphonic Acid Derivatives
Due to their structural similarity with natural α-amino acids, α-aminophosphonic acid derivatives are known biologically active molecules. In view of the relevance of tetrasubstituted carbons in nature and medicine and the strong dependence of the biological activity of chiral molecules into their absolute configuration, the synthesis of α-aminophosphonates bearing tetrasubstituted carbons in an asymmetric fashion has grown in interest in the last decades. In the following lines, the existing literature for the synthesis of optically active tetrasubstituted α-aminophosphonates are summarized, comprising diastereoselective and enantioselective approaches.
  • 912
  • 19 Jun 2021
  • Page
  • of
  • 467
ScholarVision Creations