Topic Review
Electrospinning Process of Electrospun Fibers
Electrospinning is a simple and versatile method to generate nanofibers. Remarkable progress has been made in the development of the electrospinning process. The production of nanofibers is affected by many parameters, which influence the final material properties. Electrospun fibers have a wide range of applications, such as energy storage devices and biomedical scaffolds.
  • 929
  • 24 Aug 2023
Topic Review
Symbol
In chemistry, a symbol is an abbreviation for a chemical element. Symbols for chemical elements normally consist of one or two letters from the Latin alphabet and are written with the first letter capitalised. Earlier symbols for chemical elements stem from classical Latin and Greek vocabulary. For some elements, this is because the material was known in ancient times, while for others, the name is a more recent invention. For example, Pb is the symbol for lead (plumbum in Latin); Hg is the symbol for mercury (hydrargyrum in Greek); and He is the symbol for helium (a new Latin name) because helium was not known in ancient Roman times. Some symbols come from other sources, like W for tungsten (Wolfram in German) which was not known in Roman times. A 3-letter temporary symbol may be assigned to a newly synthesized (or not-yet synthesized) element. For example, "Uno" was the temporary symbol for hassium (element 108) which had the temporary name of unniloctium, based on its atomic number being 8 greater than 100. There are also some historical symbols that are no longer officially used. In addition to the letters for the element itself, additional details may be added to the symbol as superscripts or subscripts a particular isotope, ionization, or oxidation state, or other atomic detail. A few isotopes have their own specific symbols rather than just an isotopic detail added to their element symbol. Attached subscripts or superscripts specifying a nuclide or molecule have the following meanings and positions: In Chinese, each chemical element has a dedicated character, usually created for the purpose (see Chemical elements in East Asian languages). However, Latin symbols are also used, especially in formulas. Many functional groups also have their own chemical symbol, e.g. Ph for the phenyl group, and Me for the methyl group. A list of current, dated, as well as proposed and historical signs and symbols is included here with its signification. Also given is each element's atomic number, atomic weight, or the atomic mass of the most stable isotope, group and period numbers on the periodic table, and etymology of the symbol. Hazard pictographs are another type of symbols used in chemistry.
  • 928
  • 14 Nov 2022
Topic Review
Acrylic Carrier
Wood used outdoor is subjected to different sources of degradation and should be protected properly. In this study, acrylic resins were added to a wood impregnation system using amine oxides and propiconazole, an organic fungicide, to create a two-part wood protection preservation treatment. Since amine oxides can diffuse readily into wood, this treatment protected both the surface and inner structure of the treated wood following a simple dipping. Many aspects of the treatment were studied: the adhesion of the acrylic coatings, their permeability to water, and the impregnation depth of the propiconazole. In each case, a particular attention was accorded to the interactions between the resins and the impregnation system. Adhesion and permeability tests were coupled with an artificial aging process simulating severely wet conditions. Amine oxides reduced the adhesion of the coatings, but did not impair their aging properties. Because of their hydrophilic nature, they also increased the permeability to liquid water, although they did not affect the air moisture permeability. The penetration of the propiconazole, estimated with a dye, decreased with the resin. Overall, the two parts of the treatment lightly impaired each other, but the practical aspect of this treatment may overcome these disadvantages.
  • 927
  • 30 Oct 2020
Topic Review
Ignition of Fires from Electrical Causes
In a number of countries, somewhere around 20% of reported building fires are due to electrical faults or failures. There can be a number of mechanisms responsible, but arcing in air and hot-surface ignitions of combustible materials are important causes. Details of these two mechanisms are reviewed. It is shown that even though arcing in air produces temperatures greatly higher than the ignition temperature of any ignitable solid, this does not always result in ignition. With regards to ignitions from hot surfaces or objects, it is shown that the area of the hot object presented to the ignitable material is a crucial variable.
  • 927
  • 10 Aug 2023
Topic Review
Thermoresponsive Polypeptoids
Thermoresponsive polypeptoids exhibiting a reversible phase transition in a controlled manner to temperature are a promising class of smart polymers that have drawn growing interest because of its excellent biocompatibility, biodegradability, and bioactivity. The phase transition behavior of these polymers can be tuned by polymer architectures, chain-end, and various functional groups. 
  • 926
  • 29 Dec 2020
Topic Review
Macrolides
Macrolides are a diverse class of hydrophobic compounds characterized by a macrocyclic lactone ring and distinguished by variable side chains/groups. Some of the most well characterized macrolides are toxins produced by marine bacteria, sea sponges, and other species. Many marine macrolide toxins act as biomimetic molecules to natural actin-binding proteins, affecting actin polymerization, while other toxins act on different cytoskeletal components. The disruption of natural cytoskeletal processes affects cell motility and cytokinesis, and can result in cellular death. While many macrolides are toxic in nature, others have been shown to display therapeutic properties. Indeed, some of the most well known antibiotic compounds, including erythromycin, are macrolides. In addition to antibiotic properties, macrolides have been shown to display antiviral, antiparasitic, antifungal, and immunosuppressive actions.
  • 926
  • 03 Jun 2021
Topic Review
Leucoagaricus gongylophorus and Leaf-Cutting Ants
Leaf-cutting ants are eusocial insects, as they show a highly developed social structure, manifesting ecological relationships. Their complex structure is characterized by an organized social behavior, the cultivation of a fungus garden and high levels of hygiene, which hinders the management of leaf-cutting ants compared to other insects. Leaf-cutting ants cause damage in agricultural and silviculture areas, mainly in monocultures.
  • 926
  • 21 Apr 2022
Topic Review
Screening of Medicinal Plants
Secondary metabolites, used as a single compound or as a mixture, are medicines that can be effective and safe even when synthetic drugs fail. They may even potentiate or synergize the effects of other compounds in the medicine. To meet the positive demands, heterologous expression of the genes involved in the biosynthesis of the potent compound will help in the production on the required scale. Further modifications to enhance the ADME properties of the compounds will have a significant advantage in the drug’s biological activities and bioavailability.
  • 926
  • 30 Oct 2020
Topic Review
Basis Set
A basis set in theoretical and computational chemistry is a set of functions (called basis functions) that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer. The use of basis sets is equivalent to the use of an approximate resolution of the identity: the orbitals [math]\displaystyle{ |\psi_i\rangle }[/math] are expanded within the basis set as a linear combination of the basis functions [math]\displaystyle{ |\psi_i\rangle \approx \sum_\mu c_{\mu i} |\mu\rangle }[/math], where the expansion coefficients [math]\displaystyle{ c_{\mu i} }[/math] are given by [math]\displaystyle{ c_{\mu i} = \sum_{\nu} \langle \mu|\nu \rangle^{-1} \langle \nu |\psi_i \rangle }[/math]. The basis set can either be composed of atomic orbitals (yielding the linear combination of atomic orbitals approach), which is the usual choice within the quantum chemistry community; plane waves which are typically used within the solid state community, or real-space approaches. Several types of atomic orbitals can be used: Gaussian-type orbitals, Slater-type orbitals, or numerical atomic orbitals. Out of the three, Gaussian-type orbitals are by far the most often used, as they allow efficient implementations of Post-Hartree–Fock methods.
  • 925
  • 17 Oct 2022
Topic Review
Cholinergic Signaling and Epilepsy
Epilepsy is a common brain disorder characterized by recurrent epileptic seizures with neuronal hyperexcitability. Apart from the classical imbalance between excitatory glutamatergic transmission and inhibitory γ-aminobutyric acidergic transmission, cumulative evidence suggest that cholinergic signaling is crucially involved in the modulation of neural excitability and epilepsy.
  • 925
  • 07 May 2021
  • Page
  • of
  • 467
ScholarVision Creations