Topic Review
Metamaterials for Device Applications
Metamaterials are the major type of artificially engineered materials which exhibit naturally unobtainable properties according to how their microarchitectures are engineered. Owing to their unique and controllable effective properties, including electric permittivity and magnetic permeability, the metamaterials play a vital role in the development of meta-devices.
  • 989
  • 12 May 2021
Topic Review
SAM-Based Electrodes
Self-assembled molecular monolayers (SAMs) are long recognized as crucial "bridges" between redox enzymes and solid electrode surfaces, on which the enzymes undergo direct electron transfer (DET)—for example, in enzymatic biofuel cells (EBFCs) and biosensors. SAMs possess a wide range of terminal groups that enable productive enzyme adsorption and fine-tuning in favorable orientations on the electrode. The tunneling distance, the SAM chain length, and the contacting terminal SAM groups are the most significant factors in SAM-controlled DET-type bioelectrocatalysis.
  • 987
  • 08 Feb 2021
Topic Review
Peroxyacetic Acid Pretreatment in Lignocellulose Biorefinery
The stubborn and complex structure of lignocellulose hinders the valorization of each component of cellulose, hemicellulose, and lignin in the biorefinery industries. Therefore, efficient pretreatment is an essential and prerequisite step for lignocellulose biorefinery. A considerable number of studies have focused on peroxyacetic acid (PAA) pretreatment in lignocellulose fractionation and some breakthroughs have been achieved in recent decades. 
  • 987
  • 12 Oct 2022
Topic Review
Applications of Surface Modified by Electrical Discharge Coating
Electrical discharge coating (EDC) process is used to deposit material on workpiece surface from sacrificial or green compact tool electrode in an electrical discharge machine.  Electrical discharge coating is an advanced and simple coating process that is applied for conductive materials due to the certain advantages, i.e., good adhesion among the parent material and coating, high efficiency to achieve thick coating, and ability to balance the composition of coated layer by using proper tool electrode material and dielectric fluid.
  • 987
  • 24 Oct 2022
Topic Review
Silver Nanoparticles for Waste Water Management
Rapidly increasing industrialisation has human needs, but the consequences have added to the environmental harm. The pollution caused by several industries, including the dye industries, generates a large volume of wastewater containing dyes and hazardous chemicals that drains industrial effluents. The growing demand for readily available water, as well as the problem of polluted organic waste in reservoirs and streams, is a critical challenge for proper and sustainable development. Remediation has resulted in the need for an appropriate alternative to clear up the implications. Nanotechnology is an efficient and effective path to improve wastewater treatment/remediation. The effective surface properties and chemical activity of nanoparticles give them a better chance to remove or degrade the dye material from wastewater treatment. AgNPs (silver nanoparticles) are an efficient nanoparticle for the treatment of dye effluent that have been explored in many studies. The antimicrobial activity of AgNPs against several pathogens is well-recognised in the health and agriculture sectors.
  • 987
  • 05 May 2023
Topic Review
Development and Types of High-Entropy Materials
By their unique compositions and microstructures, the high-entropy materials (HEMs) exhibit outstanding properties and performance above the threshold of traditional materials. Wear- and erosion-resistant materials are of significant interest for different applications, such as industrial devices, aerospace materials, and military equipment, related to their capability to tolerate heavy loads during sliding, rolling, or impact events.
  • 986
  • 07 Feb 2023
Topic Review
HS-SPME-GC–MS Volatile Profile Characterization of Peach
The volatile compounds of eight peach varieties (Prunus persica L.)—“Filina”, “Gergana”, “Ufo-4”, “July lady”, “Laskava”, “Flat Queen”, “Evmolpiya”, and “Morsiani 90”—growing in Bulgaria were analyzed for the first time. Gas chromatography–mass spectrometry (GC–MS) analysis and the HS-SPME technique revealed the presence of 65 volatile compounds; the main identified components were aldehydes, esters, and fatty acids. According to the provided principal component analysis (PCA) and hierarchical cluster analysis (HCA), the relative quantities of the identified volatile compounds depended on the studied peach variety. The results obtained could be successfully applied for the metabolic chemotaxonomy of peaches.
  • 986
  • 10 Feb 2022
Topic Review
Mechanisms of Graphene-Based Humidity Sensors
Humidity sensors are a common type of sensors in our daily life, and play a significant role in numerous application fields ranging from humidity control for various kinds of industrial processing, agricultural moisture monitoring, and medical fields to weather forecasting, indoor humidity sensing, and domestic machine controlling, and the corresponding research has continued for more than 100 years since the 18th century. Principally, water molecules in the gas environment will adsorb onto the graphene surfaces in a graphene-based humidity sensor, which causes changes of some properties of the graphene materials, corresponding to the humidity change. Various kinds of graphene-based humidity sensors have been developed according to different sensing mechanisms or sensor configurations. This part briefly introduces seven types of sensing mechanisms commonly applied in the graphene-based humidity sensors, and the reviews on progresses of graphene-based humidity sensors working in the last three mechanisms, i.e. SAW, QCM, and optical fiber, are also included.
  • 986
  • 14 Jan 2022
Topic Review
High-Performance Liquid Chromatography Analysis of Coffee-Based Products
Coffee is a very popular beverage worldwide. However, its composition and characteristics are affected by a number of factors, such as geographical and botanical origin, harvesting and roasting conditions, and brewing method used. As coffee consumption rises, the demands on its high quality and authenticity naturally grows as well. Unfortunately, at the same time, various tricks of coffee adulteration occur more frequently, with the intention of quick economic profit. Many analytical methods have already been developed to verify the coffee authenticity, in which the high-performance liquid chromatography (HPLC) plays a crucial role, especially thanks to its high selectivity and sensitivity. 
  • 986
  • 14 Nov 2022
Topic Review
Natural Thermal Convection of Nanofluids
Nanofluids are considered as advanced heat transfer media for thermal management and conversion systems. Research on the convective heat transfer is of paramount importance for their numerous applications. This paper presents development of experimental research on the natural convection heat transfer of nanofluids in different geometries. Experimental results and available experiment-derived correlations for the natural thermal convection of nanofluids are critically analysed. Other features such as nanofluid preparation and thermophysical properties of nanofluids that are important for convection heat transfer are also briefly reviewed and discussed. It is demonstrated that there is considerable inconsistencies of available results on these properties and features of nanofluids.Although nanofluids exhibit enhanced thermophysical properties like viscosity and thermal conductivity, convective heat transfer coefficients were also observed to deteriorate in some cases when nanofluids were used, especially for higher concentration of nanoparticles (> 0.1 vol%). However, the underlying mechanisms are also not yet well-understood despite its great importance for practical applications.
  • 986
  • 05 Oct 2020
  • Page
  • of
  • 467
ScholarVision Creations