Topic Review
Protein-based Subunit Nanovaccine
Protein-based subunit nanovaccines are typically composed of native or altered protein antigens that can self-assemble into nanoparticles, or antigens associated with nanoparticles through covalent or noncovalent interactions. Characteristically, nanovaccines are 1 to 1000 nm in size which generally facilitates the induction of stronger immune responses.
  • 612
  • 18 Oct 2021
Topic Review
Marine Endoperoxide Norterpenes
Organic extracts of marine invertebrates, mainly sponges, from seas all over the world are well known for their high in vitro anticancer and antibiotic activities which make them promising sources of compounds with potential use as pharmaceutical leads. Most of the structures discovered so far have a peculiar structural feature in common: a 1,2-dioxane ring. This is a highly reactive heterocycle that can be considered as an endoperoxide function. Together with other structural features, this group could be responsible for the strong biological activities of the substances present in the extracts. Numerous research programs have focused on their structural elucidation and total synthesis since the seventies. As a consequence, the number of established chiral centres and the similarity between different naturally occurring substances is increasingly higher. Most of these compounds have a terpenoid nature, mainly diterpene and sesterterpene, with several peculiar structural features, such as the loss of one carbon atom. Although there are many reviews dealing with the occurrence of marine peroxides, their activities, or potential pharmaceutical uses, no one has focused on those having a terpene origin and the endoperoxide function. We present here a comprehensive review of these compounds paying special attention to their structural features and their biological activity.
  • 612
  • 15 Dec 2021
Topic Review
Natural Fiber in Frictional Material of Brake Pads
Research into the use of eco-friendly materials, such as natural fibers, in brake pads has gained momentum. This can be attributed to the potential of natural fibers to replace traditional materials in tribological applications such as braking pads. The harmful impact of commonly-used brake pad materials, such as metal and mineral fibers, on human health and the environment, necessitates the development of eco-friendly alternatives. Natural fibers, such as banana peels, palm kernels, and palm slag, have been shown to be viable replacements for traditional brake pad materials.
  • 612
  • 23 Feb 2023
Topic Review
Photoactive Heterostructures
In this study we consider the results on the development and exploration of heterostructured photoactive materials with major attention focused on what are the better ways to form this type of materials and how to explore them correctly. Regardless of what type of heterostructure, metal–semiconductor or semiconductor–semiconductor, is formed, its functionality strongly depends on the quality of heterojunction. In turn, it depends on the selection of the heterostructure components (their chemical and physical properties) and on the proper choice of the synthesis method. Several examples of the different approaches such as in situ and ex situ, bottom-up and top-down, are reviewed. At the same time, even if the synthesis of heterostructured photoactive materials seems to be successful, strong experimental physical evidence demonstrating true heterojunction formation are required. A possibility for obtaining such evidence using different physical techniques is discussed.
  • 611
  • 24 Mar 2021
Topic Review
Supercritical Carbon-di-Oxide Technology for Polymeric-Particles
Supercritical carbon dioxide (SC-CO2)  based techniques can be exploited for the formulation of polymeric nanocarriers, limiting the use of toxic organic solvent. The currently approved FDA pharmaceutical polymers like PLA and PLGA particles can be obtained in the micro-and nanometer range by techniques that involve SC-CO2 as solvent (RESS, RESOLV), anti-solvent (SAS, SEDS, SAILA) or extractant (SFEE), depending on the SC-CO2 compatibility with the system materials and the final product.
  • 611
  • 27 Apr 2021
Topic Review
High-Performance Photodetectors Based on Nanostructured-Perovskites
In recent years, high-performance photodetectors have attracted wide attention because of their important applications including imaging, spectroscopy, fiber-optic communications, remote control, chemical/biological sensing and so on. Nanostructured perovskites are extremely suitable for detective applications with their long carrier lifetime, high carrier mobility, facile synthesis, and beneficial to device miniaturization. Because the structure of the device and the dimension of nanostructured perovskite have a profound impact on the performance of photodetector, we divide nanostructured perovskite into 2D, 1D, and 0D, and review their applications in photodetector (including photoconductor, phototransistor, and photodiode), respectively. The devices exhibit high performance with high photoresponsivity, large external quantum efficiency (EQE), large gain, high detectivity, and fast response time. The intriguing properties suggest that nanostructured perovskites have a great potential in photodetection. 
  • 611
  • 07 May 2021
Topic Review
Bioactive Compounds from Cardoon and Metabolic Disorders
Cardoon (Cynara cardunculus L.) is a Mediterranean plant and member of the Asteraceae family that includes three botanical taxa, the wild perennial cardoon (C. cardunculus L. var. sylvestris (Lamk) Fiori), globe artichoke (C. cardunculus L. var. scolymus L. Fiori), and domesticated cardoon (C. cardunculus L. var. altilis DC.). Cardoon has been widely used in the Mediterranean diet and folk medicine since ancient times. Today, cardoon is recognized as a plant with great industrial potential and is considered as a functional food, with important nutritional value, being an interesting source of bioactive compounds, such as phenolics, minerals, inulin, fiber, and sesquiterpene lactones. 
  • 611
  • 08 Feb 2022
Topic Review
Nano-, Micro- and Macro-Scale Impact Tests
Impact resistance is critical in many applications of coating systems involving highly loaded mechanical contact. Nano-impact testing utilises the depth-sensing capability of a multifunctional nanomechanical test system (NanoTest system, Micro Materials Ltd., Wrexham, UK) to perform impact testing at strain rates that are several orders of magnitude higher than those in quasi-static indentation tests.
  • 611
  • 21 Jun 2022
Topic Review
Electrochemical Biosensing of SARS-CoV-2 Virus for COVID-19 Management
Rapid and early diagnosis of lethal coronavirus disease-19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important issue considering global human health, economy, education, and other activities. The advancement of understanding of the chemistry/biochemistry and the structure of the SARS-CoV-2 virus has led to the development of low-cost, efficient, and reliable methods for COVID-19 diagnosis over “gold standard” real-time reverse transcription-polymerase chain reaction (RT-PCR) due to its several limitations. This led to the development of electrochemical sensors/biosensors for rapid, fast, and low-cost detection of the SARS-CoV-2 virus from the patient’s biological fluids by detecting the components of the virus, including structural proteins (antigens), nucleic acid, and antibodies created after COVID-19 infection. 
  • 611
  • 08 Aug 2022
Topic Review
Willardiine and Its Analogues
Willardiine was first identified by Rolf Gimelin in 1959 from the extracts of seeds of Acacia willardiana. Structurally it corresponds to (2S)-2-amino-3-(2,4-dioxopyrimidin-1-yl)propanoic acid (1) and carrying an uracil moiety it can be ascribed to the category of nucleoamino acids. Willardiine is synthesized by the single specific enzyme uracilylalanine synthase, and the N–heterocyclic moiety uracil obtained by the orotate pathway proved to be an effective bioisostere for the distal carboxyl group of L-glutamate. Different  aspects on both chemistry and biotechnological applications of willardine/willardine-analogues and nucleopeptides will be reviewed herein.
  • 611
  • 18 Oct 2022
  • Page
  • of
  • 466
ScholarVision Creations