Topic Review
Polydopamine-Coated Magnetic Iron Oxide Nanoparticles
Magnetic iron oxide nanoparticles have been extensively investigated due to their applications in various fields such as biomedicine, sensing, and environmental remediation. However, they need to be coated with a suitable material in order to make them biocompatible and to add new functionalities on their surface. Polydopamine is a highly biocompatible bioinspired material that can be easily deposited on various substrates with a good control on film thickness. The functional groups on its surface (catechol, carboxylic groups amine and imine) can be used to bind specific molecules or to load transition metal ions.
  • 685
  • 05 May 2022
Topic Review
Types of Micellar Assemblies
Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity.
  • 685
  • 08 Nov 2022
Topic Review
Remediation of Textile-Dye-Containing Wastewater
Water makes up most of the Earth, although just 0.3% is usable for people and animals. The huge oceans, icecaps, and other non-potable water resources make up the remaining 99.7%. Water quality has declined due to pollution from population growth, industry, unplanned urbanization, and poor water management. The textile industry has significant global importance, although it also stands as a major contributor to wastewater generation, leading to water depletion and ecotoxicity. This issue arises from the extensive utilization of harmful chemicals, notably dyes.
  • 685
  • 09 Jan 2024
Topic Review
Smart Nanomaterials for Biomedical Applications
Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called “smart” nanomaterials.
  • 684
  • 24 Feb 2021
Topic Review
Properties and Bioactivity of Chitosan
Chitosan (CS) is a natural biopolymer derived by deacetylation (N-acetyl-D-glucosamine to D-glucosamine unit) of chitin.
  • 684
  • 11 Jun 2021
Topic Review
Lead Azide at Microscale
Lead azide (LA) is a commonly used primary explosive, the detonation growth of which is difficult to study because it is so sensitive and usually has a small charge size in applications.
  • 684
  • 13 Apr 2022
Topic Review
New Liquid Chemical Hydrogen Storage Technology
The liquid chemical hydrogen storage technology has great potentials for high-density hydrogen storage and transportation at ambient temperature and pressure. However, its commercial applications highly rely on the high-performance heterogeneous dehydrogenation catalysts, owing to the dehydrogenation difficulty of chemical hydrogen storage materials. The chemists and materials scientists found that the supported metal nanoparticles (MNPs) can exhibit high catalytic activity, selectivity, and stability for the dehydrogenation of chemical hydrogen storage materials, which will clear the way for the commercial application of liquid chemical hydrogen storage technology. 
  • 684
  • 09 Sep 2022
Topic Review
DNA Origami Nanostructures
Rapid breakthroughs in nucleic acid nanotechnology have always driven the creation of nano-assemblies with programmable design, potent functionality, good biocompatibility, and remarkable biosafety during the last few decades. Researchers are constantly looking for more powerful techniques that provide enhanced accuracy with greater resolution. The self-assembly of rationally designed nanostructures is now possible because of bottom-up structural nucleic acid (DNA and RNA) nanotechnology, notably DNA origami. Because DNA origami nanostructures can be organized precisely with nanoscale accuracy, they serve as a solid foundation for the exact arrangement of other functional materials for use in a number of applications in structural biology, biophysics, renewable energy, photonics, electronics, medicine, etc. DNA origami facilitates the creation of next-generation drug vectors to help in the solving of the rising demand on disease detection and therapy, as well as other biomedicine-related strategies in the real world. These DNA nanostructures, generated using Watson–Crick base pairing, exhibit a wide variety of properties, including great adaptability, precise programmability, and exceptionally low cytotoxicity in vitro and in vivo. 
  • 684
  • 08 May 2023
Topic Review
Sustainable Concrete Quality Management
The development of a concrete mixture design process for high-quality concrete production with sustainable values is a complex process because of the multiple required properties at the green/hardened state of concrete and the interdependency of concrete mixture parameters. A new multi-criteria decision making (MCDM) technique based on Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) methodology is applied to a fuzzy setting for the selection of concrete mix factors and concrete mixture design methods with the aim towards sustainable concrete quality management. Three objective properties for sustainable quality concrete are adopted as criteria in the proposed MCDM model. The seven most dominant concrete mixture parameters with consideration to sustainable concrete quality issues, i.e., environmental (density, durability) and socioeconomic criteria (cost, optimum mixture ingredients ratios), are proposed as sub-criteria. Three mixture design techniques that have potentiality to include sustainable aspects in their design procedure, two advanced and one conventional concrete mixture design method, are taken as alternatives in the MCDM model. The proposed selection support framework may be utilized in updating concrete design methods for sustainability and in deciding the most dominant concrete mix factors that can provide sustainable quality management in concrete production as well as in concrete construction. The concrete mix factors found to be most influential to produce sustainable concrete quality include the water/cement ratio and density. The outcomes of the proposed MCDM model of fuzzy TOPSIS are consistent with the published literature and theory. TheDOE method was found to be more suitable in sustainable concrete quality management considering its applicable objective quality properties and concrete mix factors.
  • 683
  • 26 Oct 2020
Topic Review
AuNPs and Fibrous Materials
The use of nanoparticles is a multidisciplinary approach to provide UV blocking, antimicrobial, water repellent, colorant, flame retardant, sensing, and self-cleaning properties to textiles. Particularly, the antimicrobial textiles with improved functionalities find several applications, namely, in health and hygiene products, infection control, and barrier material. Depositing nanoparticles in textiles have been a promising strategy to achieve multifunctional materials. Particularly, antimicrobial properties are highly valuable due to the emergence of new pathogens and the spread of existing ones. Various techniques have been used by researchers to functionalize natural and synthetic fibers with AuNPs such as sputtering, electrostatic assembly, chemical reduction in solution, dip-coating, electroless plating, drop and dry, biosynthesis, and print pasting method.
  • 683
  • 11 May 2021
  • Page
  • of
  • 465
ScholarVision Creations