Topic Review
Optimizing Sustainability Opportunities for Biochar
Biochar is most commonly considered for its use as a soil amendment, where it has gained attention for its potential to improve agricultural production and soil health. Twenty years of near exponential growth in investigation has demonstrated that biochar does not consistently deliver these benefits, due to variables in biochar, soil, climate, and cropping systems. While biochar can provide agronomic improvements in marginal soils, it is less likely to do so in temperate climates and fertile soils. Here, biochar and its coproducts may be better utilized for contaminant remediation or the substitution of nonrenewable or mining-intensive materials. 
  • 750
  • 18 Oct 2021
Topic Review
The Chemical Fingerprint of Fortified Wines
The chemical fingerprint of fortified wines is very complex and fascinating, being constituted by several hundred volatile and non-volatile chemical groups, such as terpenoids, pyrazines, esters, alcohols, acids, furanic compounds, phenolic compounds, and organic acids, among others. These chemical groups were present in fortified wines at different volatilities, polarities, and concentration ranges, from a few ng/L to mg/L. However, the quality of wine also depends on several parameters, such as grape variety, vineyard location, terroir, and vinification conditions (e.g., fermentation, ageing), among others. 
  • 750
  • 12 Jul 2023
Topic Review
Electroplated Functional Materials
Electroplating has been favored to date as a surface treatment technology in various industries in the development of semiconductors, automobiles, ships, and steel due to its advantages of being a simple, solution-based process, with low cost and high throughput. Recently, classical electroplating has been reborn as an advanced manufacturing process for functional materials by combining it with unconventional optical three-dimensional (3D) nanofabrication techniques capable of generating polymer templates with high-resolution 3D periodic nanostructures.
  • 750
  • 29 Dec 2020
Topic Review
Kinetics of Carbon Nanotubes
Carbon formation on steel has recently become an active research area with several important applications, using either carbon nanotubes (CNTs) or graphene structures. The production of vertically aligned CNT (VACNT) forests with combined metals has been explored with important results. Detailed kinetics is the best approach to understand a mechanism. The growth behavior seems complex but can be simplified through the knowledge of the three more common alternative reaction mechanisms/routes.
  • 750
  • 01 Feb 2021
Topic Review
Reconstituted High-Density Lipoprotein Nanoparticles
Epidemiological results revealed that there is an inverse correlation between high-density lipoprotein (HDL) cholesterol levels and risks of atherosclerotic cardiovascular disease (ASCVD). Mounting evidence supports that HDLs are atheroprotective, therefore, many therapeutic approaches have been developed to increase HDL cholesterol (HDL-C) levels. Nevertheless, HDL-raising therapies, such as cholesteryl ester transfer protein (CETP) inhibitors, failed to ameliorate cardiovascular outcomes in clinical trials, thereby casting doubt on the treatment of cardiovascular disease (CVD) by increasing HDL-C levels. Therefore, HDL-targeted interventional studies were shifted to increasing the number of HDL particles capable of promoting ATP-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux. One such approach was the development of reconstituted HDL (rHDL) particles that promote ABCA1-mediated cholesterol efflux from lipid-enriched macrophages. Here, we explore the manipulation of rHDL nanoparticles as a strategy for the treatment of CVD. In addition, we discuss technological capabilities and the challenge of relating preclinical in vivo mice research to clinical studies. Finally, by drawing lessons from developing rHDL nanoparticles, we also incorporate the viabilities and advantages of the development of a molecular imaging probe with HDL nanoparticles when applied to ASCVD, as well as gaps in technology and knowledge required for putting the HDL-targeted therapeutics into full gear.
  • 749
  • 01 Nov 2020
Topic Review
Antimicrobial Resistance and Inorganic Nanoparticles
A bacterium becomes resistant due to the transfer of genes encoding antibiotic resistance. Bacteria constantly mutate; therefore, their defense mechanisms change constantly.  Nanotechnology plays a key role in antimicrobial resistance due to materials modified at the nanometer scale, allowing large numbers of molecules to assemble to have a dynamic interface. These nanomaterials act as carriers, and their design is mainly focused on introducing the temporal and spatial release of the payload of antibiotics. In addition, they generate new antimicrobial modalities for the bacteria, which are not capable of protecting themselves.
  • 748
  • 18 Dec 2021
Topic Review
Particulate-Reinforced Metal Matrix Composites
Particulate-reinforced metal matrix composites (PRMMCs) with excellent tribo-mechanical properties are important engineering materials and have attracted constant scientific interest over the years. Among the various fabrication methods used, co-electrodeposition (CED) is valued due to its efficiency, accuracy, and affordability. However, the way this easy-to-perform process is carried out is inconsistent, with researchers using different methods for volume fraction measurement and tribo-mechanical testing, as well as failing to carry out proper interface characterization.
  • 747
  • 30 Jun 2021
Topic Review
Mechanisms of α-Syn Aggregation In Vitro
The aggregation of proteins into amyloid fibers is linked to more than forty still incurable cellular and neurodegenerative diseases such as Parkinson’s disease (PD), multiple system atrophy, Alzheimer’s disease and type 2 diabetes, among others. The process of amyloid formation is a main feature of cell degeneration and disease pathogenesis. Despite being methodologically challenging, a complete understanding of the molecular mechanism of aggregation, especially in the early stages, is essential to find new biological targets for innovative therapies. Here, chemical and biophysical methodologies that provided insights on Alpha-synuclein aggregation that would help to investigate other less-known aggregation-prone peptides and proteins were presented.
  • 747
  • 03 Jan 2023
Topic Review
Polyurea for Blast and Impact Protection
Polyurea has attracted extensive attention from researchers and engineers in the field of blast and impact protection due to its excellent quasi-static mechanical properties and dynamic mechanical properties. Its mechanical properties and energy absorption capacity have been tuned by means of formulation optimization, molecular dynamics (MD) simulation and the addition of reinforcing materials. Owing to the special molecular structure of polyurea, the mechanism of polyurea protection against blasts and impacts is the simultaneous effect of multiple properties. For different substrates and structures, polyurea needs to provide different performance characteristics, including adhesion, hardness, breaking elongation, etc., depending on the characteristics of the load to which it is subjected. 
  • 748
  • 11 Jul 2022
Topic Review
Chitosan as a Biomaterial
Chitosan remarkable properties have aroused the interest of applying this material in several biomedical applications, such as tissue engineering, wound dressing, drug delivery, and cancer treatment, what has aroused the interest of this review to gather the state-of-the-art concerning this polysaccharide when used as a biomaterial, providing information about its characteristics, chemical modifications, and applications.
  • 748
  • 25 Nov 2020
  • Page
  • of
  • 465
ScholarVision Creations