Topic Review
Application of Mixed Potential Theory to Leaching
Leaching is a central unit operation in the hydrometallurgical processing of minerals, which often occurs by means of electrochemical reactions. Application of mixed potential theory to explain the kinetics of oxidative and reductive leaching processes is a useful concept in explaining observed results. Native metals, selected oxides, and most base metal sulfides are electron-conducting phases. For these minerals, leaching may take place by normal corrosion, passivation or galvanic couple mechanisms, which provide individual electrode kinetics enabling the calculation of mixed potentials and overall reaction kinetics. 
  • 803
  • 08 Jul 2022
Topic Review
Electric Double Layer Structure
The electric double layer (EDL) is the most important electrochemical and heterogeneous catalysis region. Because of it, its modeling and investigation are something that can be found in the literature for a long time. However, it is still something in debate, since nowadays a series of new techniques are available for the investigation of this interfacial area at the molecular level by experiments and simulations.
  • 803
  • 09 Dec 2022
Topic Review
Iron Oxide Nanoparticles in Biomedicine
Iron oxides are common natural compounds and can also easily be synthesized in the laboratory. There are 16 iron oxides, including oxides, hydroxides and oxide-hydroxides. These minerals are a result of aqueous reactions under various redox and pH conditions. They have the basic composition of Fe,O, and/or OH, but differ in the valency of iron and overall crystal structure. Some of the important iron oxides are goethite, akaganeite, lepidocrocite, magnetite and hematite.  Iron oxide (IO) nanoparticles consist of maghemite (y-Fe2O3) and/or magnetite (Fe3O4) particles with diameters ranging from 1 and 100 nanometer and find applications in magnetic data storage, biosensing, drug-delivery, etc. In nanoparticles (NPs), the surface area to volume ratio increases significantly. This allows a considerably higher binding capacity and excelent dispersibility of NPs in solutions. Magnetic NPs, with sizes between 2 and 20 nm display superparamagnetism, i.e. their magnetization is zero, in the absence of an external magnetic field and they can be magnetized by an extermal magnetic source. This property provides additional stability for magnetic nanparticles in solutions.  Because of their magnetic and superparamagnetic properties, iron oxide nanoparticles (IONPs) have many potential applications for medical use. The synthesis of these NPs has been the basis of many studies, each proposing different synthesis methods yielding nanostructures of different properties. The chemical, physical and magnetic properties of these nanostructures are examined to determine their possible application in mgnetic resonance imaging (MRI), contrast enhancement and thermal activation therapy. NPs characterization and demonstration of their potential uses pave  the way to the development of smart magnetic IONPs for targeted diagnostics and therapeutics of human diseases, including cancer and Alzheimer’s disease. Using the proprietary monoloyer polymer coating strategy, hydrophobic, organic ligand-coated IONPs have successfully been converted into water soluble, bio-accessible IONPs. Recent enhancement in the quality of both organic and water soluble IONPs opens avenues of opportunities for development of IO nanoparticles based applications, for example:  ·         As contrast agents for magnetic resonance imaging (MRI)  ·         As drug carriers for target specific drug delivery  ·         As gene carriers for gene therapy ·         As therapeutic agents for hyperthermia based cancer treatments ·         As magnetic sensing probes for in-vitro diagnostics (IVD) ·         As nanoadjuvant for vaccine and antibody production.  This growing portfolio of magnetic NPs excited us to offer a brief review on the biologically compatible IONPs synthesized by electrochemical deposition, and their potential use in biomedical application. 
  • 803
  • 21 Jan 2021
Topic Review
Ammonium Nitrate Disasters
When heated, ammonium nitrate decomposes non-explosively into gases including oxygen; however, it can be induced to decompose explosively by detonation. Large stockpiles of the material can be a major fire risk due to their supporting oxidation, and may also detonate, as happened in the Texas City disaster of 1947, which led to major changes in the regulations for storage and handling. There are two major classes of incidents resulting in explosions: In the first case, the explosion happens by the mechanism of shock to detonation transition. The initiation happens by an explosive charge going off in the mass, by the detonation of a shell thrown into the mass, or by detonation of an explosive mixture in contact with the mass. The examples are Kriewald, Morgan, Oppau, Tessenderlo, and Traskwood. In the second case, the explosion results from a fire that spreads into the ammonium nitrate (AN) itself (Texas City, Brest, Tianjin), or to a mixture of an ammonium nitrate with a combustible material during the fire. The fire must be confined at least to a degree for successful transition from a fire to an explosion (a phenomenon known as "deflagration to detonation transition", or DDT). Pure, compact AN is stable and very difficult to initiate. However, there are numerous cases when even impure AN did not explode in a fire. Ammonium nitrate decomposes in temperatures above 210 °C (410 °F). Pure AN is stable and will stop decomposing once the heat source is removed, but when catalysts are present, the reaction can become self-sustaining (known as self-sustaining decomposition, or SSD). This is a well-known hazard with some types of NPK fertilizers and is responsible for the loss of several cargo ships.
  • 801
  • 28 Oct 2022
Topic Review
Effect of Barium incorporation into Biomaterials
In the present manuscript, a brief overview on barium, its possible utilization, and the aftermath of its behavior in organisms has been presented. A number of studies have exhibited both the unwanted outcome barium displayed and the advantages of barium laden compounds, tested in in vitro and in vivo settings. The plethora of prospective manipulations covered the area of hydrogels and calcium phosphates, with an end goal of examining barium’s future in the tissue engineering. Can barium be used as a substitute for other biologically relevant divalent cations? Will the incorporation of barium ions hamper the execution of the essential processes in the organism? Most importantly, can the benefits outweigh the harm?
  • 802
  • 18 Nov 2021
Topic Review
Protein Caging Tools for Protein Photoactivation
In biosciences and biotechnologies, it is recently critical to promote research regarding the regulation of the dynamic functions of proteins of interest. Light-induced control of protein activity is a strong tool for a wide variety of applications because light can be spatiotemporally irradiated in high resolutions. Therefore, synthetic, semi-synthetic, and genetic engineering techniques for photoactivation of proteins have been actively developed. As a solution for overcoming barriers in conventional ones, researchers' recent approaches in which proteins were chemically modified with biotinylated caging reagents are introduced to photo-activate a variety of proteins without genetic engineering and elaborate optimization.
  • 802
  • 21 Apr 2022
Topic Review
Solid State NMR Spectroscopy
Solid-state NMR relaxometry has established its position in food science, including the determination of moisture content, solid fat content and much more and shown to be complementary to traditional microscopic techniques in studying the phase morphology of blended materials used in semiconductive polymer-based devices .
  • 801
  • 02 Jul 2021
Topic Review
Radiation-engineered nano-scale bio-hybrid polymer devices
Bio-hybrid hydrogels consist of a water-swollen hydrophilic polymer network encapsulating or conjugating single biomolecules, or larger and more complex biological constructs like whole cells. By modulating at least one dimension of the hydrogel system at the micro- or nanoscale, the activity of the biological component can be extremely upgraded with clear advantages for the development of therapeutic or diagnostic micro- and nano-devices. Gamma or e-beam irradiation of polymers allow a good control of the chemistry at the micro-/nanoscale with minimal recourse to toxic reactants and solvents. Another potential advantage is to obtain simultaneous sterilization when the absorbed doses are within the sterilization dose range.
  • 801
  • 29 Jan 2021
Topic Review
Trending Methods for Rapid Cannabinoids Detection
Roadside testing of illicit drugs such as tetrahydrocannabinol (THC) requires simple, rapid, and cost-effective methods. The need for non-invasive detection tools has led to the development of selective and sensitive platforms, able to detect phyto- and synthetic cannabinoids by means of their main metabolites in breath, saliva, and urine samples. One may estimate the time passed from drug exposure and the frequency of use by corroborating the detection results with pharmacokinetic data. Modified surfaces can also act as filters that allow only the target analyte to participate in the electrode reaction. In the case of cannabinoids, as in the case of other drugs, the investigation of the mechanism of action within the organism is the basis of biosensor development.
  • 801
  • 18 Nov 2022
Topic Review
Architectures of Polyacrylic Acid
Polyacrylic acid (PAA) is a non-toxic, biocompatible, and biodegradable polymer that gained lots of interest in recent years. PAA nano-derivatives can be obtained by chemical modification of carboxyl groups with superior chemical properties in comparison to unmodified PAA.
  • 801
  • 01 Apr 2022
  • Page
  • of
  • 465
ScholarVision Creations