Topic Review
Olive Mill Wastewater Remediation
Olive oil production in Mediterranean countries represents a crucial market, especially for Spain, Italy, and Greece. Waste generated from olive oil production processes can be divided into solid waste and olive mill wastewaters (OMWW). 
  • 978
  • 31 Aug 2022
Topic Review
Amalgam
An amalgam is an alloy of mercury with another metal. It may be a liquid, a soft paste or a solid, depending upon the proportion of mercury. These alloys are formed through metallic bonding, with the electrostatic attractive force of the conduction electrons working to bind all the positively charged metal ions together into a crystal lattice structure. Almost all metals can form amalgams with mercury, the notable exceptions being iron, platinum, tungsten, and tantalum. Silver-mercury amalgams are important in dentistry, and gold-mercury amalgam is used in the extraction of gold from ore. Dentistry has used alloys of mercury with metals such as silver, copper, indium, tin and zinc.
  • 978
  • 31 Oct 2022
Topic Review
Structure of Humic Substances
Humic substances (HS) are dominant components of soil organic matter and are recognized as natural, effective growth promoters to be used in sustainable agriculture. In recent years, many efforts have been made to get insights on the relationship between HS chemical structure and their biological activity in plants using combinatory approaches. Relevant results highlight the existence of key functional groups in HS that might trigger positive local and systemic physiological responses via a complex network of hormone-like signaling pathways. The biological activity of HS finely relies on their dosage, origin, molecular size, degree of hydrophobicity and aromaticity, and spatial distribution of hydrophilic and hydrophobic domains. The molecular size of HS also impacts their mode of action in plants, as low molecular size HS can enter the root cells and directly elicit intracellular signals, while high molecular size HS bind to external cell receptors to induce molecular responses. Main targets of HS in plants are nutrient transporters, plasma membrane H+-ATPases, hormone routes, genes/enzymes involved in nitrogen assimilation, cell division, and development. 
  • 977
  • 08 May 2021
Topic Review
DMAHDM Nanocomposite
Researchers have developed novel nanocomposites that incorporate additional biomaterials with dimethylaminohexadecyl methacrylate (DMAHDM) in order to reduce secondary caries. The aim of this review was to summarize the current literature and assess the synergistic antibacterial and remineralizing effects that may contribute to the prevention of secondary caries. An electronic search was undertaken in MEDLINE using PubMed, Embase, Scopus, Web of Science and Cochrane databases. 
  • 976
  • 01 Jun 2021
Topic Review
Organosolv Lignin-Based Polyurethane
Polyurethanes (PUs) present an important class of polymers due to outstanding mechanical, chemical and physical properties. Thus, they find application in many industrial sectors in the form of flexible or rigid foams, coatings, adhesives, elastomers, thermoplasts or thermosets. Modern PU coating applications include self-healing coating films that can also be applied to rather rough surfaces, such as wood.
  • 976
  • 22 Mar 2022
Topic Review
2D Materials in Ultrafast Lasers
Ultrafast lasers are the key component of ultrafast photonics, which have come into practice in various fields, such as micromachining, communication, medical procedures, gas detection, and remote sensing. With the advantages of stability, compactness, and easy implementation, mode-locking and Q-switching are two notable techniques to achieve ultrafast pulsed lasers, where SAs perform crucial roles in many types of ultrafast lasers, such as fiber, solid-state, and waveguide lasers.
  • 976
  • 25 Aug 2021
Topic Review
Processes for Obtaining Syngas and Hydrogen
The growing demand for high-quality chemical products has already stimulated an increased interest in the conversion of hydrocarbon gases (natural gas, methane, biogas) into motor fuels and high value-added chemical products, as well as into hydrogen, which is increasingly in demand on the market. The conversion of natural gas into hydrogen and syngas is still the most complex and costly stage of modern gas chemical processes, the low efficiency of which hinders the development of modern gas chemistry. 
  • 976
  • 14 Apr 2023
Topic Review
Transdermal Drug Delivery System
Transdermal drug delivery system (TDDS) is an attractive method for drug delivery with convenient application, less first-pass effect, and fewer systemic side effects. Among all generations of TDDS, transdermal nanocarriers show the greatest clinical potential because of their non-invasive properties and high drug delivery efficiency. However, it is still difficult to design optimal transdermal nanocarriers to overcome the skin barrier, control drug release, and achieve targeting. Hence, surface modification becomes a promising strategy to optimize and functionalize the transdermal nanocarriers with enhanced penetration efficiency, controlled drug release profile, and targeting drug delivery.
  • 975
  • 14 Dec 2022
Topic Review
Silicone Resin-Based Intumescent Paints
Silicone resins are widely applied as coating materials due to their unique properties, especially those related to very good heat resistance. The most important effect on the long-term heat resistance of the coating is connected with the type of resin. Moreover, this structure is stabilized by a chemical reaction between the hydroxyl groups from the organoclay and the silicone resin. The novel trends in application of silicone resins in intumescent paints used mostly for protection of steel structures against fire will be presented based on literature review. Some examples of innovative applications for fire protection of other materials will be also presented. The effect of silicone resin structure and the type of filler used in these paints on the properties of the char formed during the thermal decomposition of the intumescent paint will be discussed in detail. The most frequently used additives are expanded graphite and organoclay. It has been demonstrated that silicate platelets are intercalated in the silicone matrix, significantly increasing its mechanical strength and resulting in high protection against fire.
  • 975
  • 05 Nov 2020
Topic Review Peer Reviewed
Conductive Heat Transfer in Thermal Bridges
A thermal bridge is a component of a building that is characterized by a higher thermal loss compared with its surroundings. Their accurate modeling is a key step in energy performance analysis due to the increased awareness of the importance of sustainable design. Thermal modeling in architecture and engineering is often not carried out volumetrically, thereby sacrificing accuracy for complex geometries, whereas numerical textbooks often give the finite element method in much higher generality than required, or only treat the case of uniform materials. Despite thermal modeling traditionally belonging exclusively to the engineer’s toolbox, computational and parametric design can often benefit from understanding the key steps of finite element thermal modeling, in order to inform a real-time design feedback loop. In this entry, these gaps are filled and the reader is introduced to all relevant physical and computational notions and methods necessary to understand and compute the stationary energy dissipation and thermal conductance of thermal bridges composed of materials in complex geometries. The overview is a self-contained and coherent expository, and both physically and mathematically as correct as possible, but intuitive and accessible to all audiences. Details for a typical example of an insulated I-beam thermal bridge are provided.
  • 974
  • 26 May 2022
  • Page
  • of
  • 465
Video Production Service