Topic Review
Shape Changing Materials
This short review is the applications section of our original paper that reviews materials and structures displaying non-conventional deformations as a response to different actuations (e.g., electricity, heat and mechanical loading).
  • 1.0K
  • 27 Oct 2020
Topic Review
Zn(II) Hydrazone Complexes
Compound Name: (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(thiazol-2-yl)ethylidene)hydrazinyl)ethan-1-aminium di(thiocyanato-κN) zink(II) dihydrate.
  • 999
  • 29 Dec 2020
Topic Review
PbS and PbSe in Room-Temperature Infrared Photodetectors
Infrared photodetectors have received much attention for several decades due to their broad applications in the military, science, and daily life. However, for achieving an ideal signal-to-noise ratio and a very fast response, cooling is necessary in those devices, which makes them bulky and costly. The earliest information about lead-based semiconductor materials comes from a patent published in 1904 by Bose, who found and utilized the photovoltaic effect of a crystal of galena. Subsequently, Case carried out his research on thin films of thallous sulfide (Tl2S) in 1917 and 1920. Due to the military needs of infrared information in World War II, Germany developed lead salt (PbS, PbSe and lead telluride (PbTe)) materials vigorously in the 1930s. During that period, different methods for preparing lead salt thin films developed rapidly. Gudden and Kutzscher prepared lead salt films by evaporation and chemical deposition, respectively. Shortly after German scientists firstly studied it, the United States scientists also conducted research on it. Cashman of Northwestern University began work on Tl2S in 1941 and later turned his full attention to the preparation of thin films of PbS, PbSe and PbTe by vacuum evaporation. Among the three typical lead salts used in infrared detectors, PbS and PbSe have been developed and produced to some extent, but PbTe has not been adapted for production and has been gradually phased out.
  • 999
  • 23 May 2022
Topic Review
Scalable Synthesis of Mesoporous TiO2
Increasing environmental concern, related to pollution and clean energy demand, have urged the development of new smart solutions profiting from nanotechnology, including the renowned nanomaterial-assisted photocatalytic degradation of pollutants. In this framework, increasing efforts are devoted to the development of TiO2-based nanomaterials with improved photocatalytic activity. A plethora of synthesis routes to obtain high quality TiO2-based nanomaterials is currently available. Nonetheless, large-scale production and the application of nanosized TiO2 is still hampered by technological issues and the high cost related to the capability to obtain TiO2 nanoparticles with high reaction yield and adequate morphological and structural control. 
  • 999
  • 26 Jul 2021
Topic Review
Thia-Michael Reaction
While the Michael addition has been employed for more than 130 years for the synthesis of a vast diversity of compounds, the reversibility of this reaction when heteronucleophiles are involved has been generally less considered. First applied to medicinal chemistry, the reversible character of the hetero-Michael reactions has been explored for the synthesis of Covalent Adaptable Networks (CANs), in particular the thia-Michael reaction and more recently the aza-Michael reaction. In these cross-linked networks, exchange reactions take place between two Michael adducts by successive dissociation and association steps. In order to understand and precisely control the exchange in these CANs, it is necessary to get an insight into the critical parameters influencing the Michael addition and the dissociation rates of Michael adducts by reconsidering previous studies on these matters. 
  • 998
  • 28 Nov 2022
Topic Review
Fludeoxyglucose (18F)
Fluorodeoxyglucose (18F) (INN), or fluorodeoxyglucose F 18 (USAN and USP), also commonly called fluorodeoxyglucose and abbreviated [18F]FDG, 18F-FDG or FDG, is a radiopharmaceutical used in the medical imaging modality positron emission tomography (PET). Chemically, it is 2-deoxy-2-[18F]fluoro-D-glucose, a glucose analog, with the positron-emitting radionuclide fluorine-18 substituted for the normal hydroxyl group at the C-2 position in the glucose molecule. The uptake of 18F-FDG by tissues is a marker for the tissue uptake of glucose, which in turn is closely correlated with certain types of tissue metabolism. After 18F-FDG is injected into a patient, a PET scanner can form two-dimensional or three-dimensional images of the distribution of 18F-FDG within the body. Since its development in 1976, 18F-FDG had a profound influence on research in the neurosciences. The subsequent discovery in 1980 that 18F-FDG accumulates in tumors underpins the evolution of PET as a major clinical tool in cancer diagnosis. 18F-FDG is now the standard radiotracer used for PET neuroimaging and cancer patient management. The images can be assessed by a nuclear medicine physician or radiologist to provide diagnoses of various medical conditions.
  • 998
  • 10 Oct 2022
Topic Review
Mesoporous Silica Nanoparticles therapy potential
Nanoparticles have become a powerful tool in oncology not only as carrier of the highly toxic chemotherapeutic drugs but also as imaging contrast agents that provide valuable information about the state of the disease and its progression. The enhanced permeation and retention effect for loaded nanocarriers in tumors allow substantial improvement of selectivity and safety of anticancer nanomedicines. Additionally, the possibility to design stimuli-responsive nanocarriers able to release their payload in response to specific stimuli provide an excellent control on the administered dosage.
  • 997
  • 15 Oct 2020
Topic Review
Antioxidant Compounds Extracted from Plants for Vegetable Oils
Oil oxidation is the main factor limiting vegetable oils’ quality during storage, as it leads to the deterioration of oil’s nutritional quality and gives rise to disagreeable flavors. These changes make fat-containing foods less acceptable to consumers. To deal with this problem and to meet consumer demand for natural foods, vegetable oil fabricators and the food industry are looking for alternatives to synthetic antioxidants to protect oils from oxidation. In this context, natural antioxidant compounds extracted from different parts (leaves, roots, flowers, and seeds) of medicinal and aromatic plants (MAPs) could be used as a promising and sustainable solution to protect consumers’ health. 
  • 996
  • 21 Nov 2022
Topic Review
Electroactive Materials Based on TEMPO
The redox-active TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl-4-yl) fragment is a popular component of organic energy storage and catalytic systems as its benefits include remarkable electrochemical performance and decent physical properties. TEMPO is a verstile compound that finds its use in various chemical and biological systems, and is also known to be an efficient catalyst for alcohol oxidation, oxygen reduction, and various complex organic reactions. It can be attached to various aliphatic and conductive polymers to form energy storage compounds for organic batteries or high-loading catalysis systems. The performance and efficiency of TEMPO-containing materials strongly depend on the molecular structure, and thus rational design of such compounds is vital for successful implementation.
  • 996
  • 28 Apr 2022
Topic Review
Synthesis of 3,4-Dihydropyrimidin(thio)one Containing Scaffold
The interest in 3,4-dihydropyrimidine-2(1H)-(thio)ones is increasing every day, mainly due to their paramount biological relevance. The Biginelli reaction is the classical approach to reaching these scaffolds, although the product diversity suffers from some limitations. In order to overcome these restrictions, two main approaches have been devised. The first one involves the modification of the conventional components of the Biginelli reaction and the second one refers to the postmodification of the Biginelli products. Both strategies have been extensively revised in this manuscript. Regarding the first one, initially, the modification of one of the components was covered. Although examples of modifications of the three of them were described, by far the modification of the keto ester counterpart was the most popular approach, and a wide variety of different enolizable carbonylic compounds were used; moreover, changes in two or the three components were also described, broadening the substitution of the final dihydropyrimidines. Together with these modifications, the use of Biginelli adducts as a starting point for further modification was also a very useful strategy to decorate the final heterocyclic structure.
  • 996
  • 15 Aug 2022
  • Page
  • of
  • 465
Video Production Service