Topic Review
«Hadron-M» Complex Installation
“Hadron-M complex installation”, which included an ionization-neutron calorimeter with an area of 55 m2 and an absorber thickness of 1244 g/cm2 (out of eight rows of ionization chambers), one row of neutron detectors and two shower systems of scintillation detectors. The effective area of the “Hadron-M” complex installation was about 30,000 m2.
  • 603
  • 27 Feb 2023
Topic Review
Water-Based Liquid Scintillators
Monolithic optical detectors, either water–Cherenkov detectors or liquid scintillator detectors, are a well-established technique in neutrino physics. Using water-based liquid scintillators (WbLS) is an approach that exploits Cherenkov and scintillation signals simultaneously; i.e., water is loaded with 1% to 10% liquid scintillator. 
  • 447
  • 04 Jan 2023
Topic Review
Electro-gyration
The electrogyration effect is the spatial dispersion phenomenon, that consists in the change of optical activity (gyration) of crystals by a constant or time-varying electric field. Being a spatial dispersion effect, the induced optical activity exhibit different behavior under the operation of wave vector reversal, when compared with the Faraday effect: the optical activity increment associated with the electrogyration effect changes its sign under that operation, contrary to the Faraday effect. Formally, it is a special case of gyroelectromagnetism obtained when the magnetic permeability tensor is diagonal. 
  • 666
  • 05 Dec 2022
Topic Review
Protein Film Voltammetry
In electrochemistry, protein film voltammetry (or protein film electrochemistry, or direct electrochemistry of proteins) is a technique for examining the behavior of proteins immobilized (either adsorbed or covalently attached) on an electrode. The technique is applicable to proteins and enzymes that engage in electron transfer reactions and it is part of the methods available to study enzyme kinetics. Provided that it makes suitable contact with the electrode surface (electron transfer between the electrode and the protein is direct) and provided that it is not denatured, the protein can be fruitfully interrogated by monitoring current as a function of electrode potential and other experimental parameters. Various electrode materials can be used. Special electrode designs are required to address membrane-bound proteins.
  • 516
  • 02 Dec 2022
Topic Review
Frost Diagram
A Frost diagram or Frost–Ebsworth diagram is a type of graph used by inorganic chemists in electrochemistry to illustrate the relative stability of a number of different oxidation states of a particular substance. The graph illustrates the free energy vs oxidation state of a chemical species. This effect is dependent on pH, so this parameter also must be included. The free energy is determined by the oxidation–reduction half-reactions. The Frost diagram allows easier comprehension of these reduction potentials than the earlier-designed Latimer diagram, because the “lack of additivity of potentials” was confusing. The free energy ΔG° is related to reduction potential E in the graph by given formula: ΔG° = −nFE° or nE° = −ΔG°/F, where n is the number of transferred electrons, and F is Faraday constant (F = 96,485 J/(V·mol)). The Frost diagram is named after Arthur Atwater Frost (de), who originally created it as a way to "show both free energy and oxidation potential data conveniently" in a 1951 paper.
  • 2.9K
  • 01 Dec 2022
Topic Review
Electro-Osmosis
Electroosmotic flow (or electro-osmotic flow, often abbreviated EOF; synonymous with electroosmosis or electroendosmosis) is the motion of liquid induced by an applied potential across a porous material, capillary tube, membrane, microchannel, or any other fluid conduit. Because electroosmotic velocities are independent of conduit size, as long as the electrical double layer is much smaller than the characteristic length scale of the channel, electroosmotic flow will have little effect. Electroosmotic flow is most significant when in small channels. Electroosmotic flow is an essential component in chemical separation techniques, notably capillary electrophoresis. Electroosmotic flow can occur in natural unfiltered water, as well as buffered solutions.
  • 815
  • 29 Nov 2022
Topic Review
Channelling
Channelling is the process that constrains the path of a charged particle in a crystalline solid. Many physical phenomena can occur when a charged particle is incident upon a solid target, e.g., elastic scattering, inelastic energy-loss processes, secondary-electron emission, electromagnetic radiation, nuclear reactions, etc. All of these processes have cross sections which depend on the impact parameters involved in collisions with individual target atoms. When the target material is homogeneous and isotropic, the impact-parameter distribution is independent of the orientation of the momentum of the particle and interaction processes are also orientation-independent. When the target material is monocrystalline, the yields of physical processes are very strongly dependent on the orientation of the momentum of the particle relative to the crystalline axes or planes. Or in other words, the stopping power of the particle is much lower in certain directions than others. This effect is commonly called the "channelling" effect. It is related to other orientation-dependent effects, such as particle diffraction. These relationships will be discussed in detail later.
  • 358
  • 29 Nov 2022
Topic Review
Half-Reaction
A half reaction (or half-cell reaction) is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. Often, the concept of half reactions is used to describe what occurs in an electrochemical cell, such as a Galvanic cell battery. Half reactions can be written to describe both the metal undergoing oxidation (known as the anode) and the metal undergoing reduction (known as the cathode). Half reactions are often used as a method of balancing redox reactions. For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H+ ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH− ions to balance the H+ ions in the half reactions (which would give H2O).
  • 2.8K
  • 28 Nov 2022
Topic Review
CPU Power Dissipation
Central processing unit power dissipation or CPU power dissipation is the process in which central processing units (CPUs) consume electrical energy, and dissipate this energy in the form of heat due to the resistance in the electronic circuits.
  • 1.8K
  • 25 Nov 2022
Topic Review
Geothrix Fermentans
Geothrix fermentans is a rod-shaped, anaerobic bacterium. It is about 0.1 µm in diameter and ranges from 2-3 µm in length. Cell arrangement occurs singly and in chains. Geothrix fermentans can normally be found in aquatic sediments such as in aquifers. As an anaerobic chemoorganotroph, this organism is best known for its ability to use electron acceptors Fe(III), as well as other high potential metals. It also uses a wide range of substrates as electron donors. Research on metal reduction by G. fermentans has contributed to understanding more about the geochemical cycling of metals in the environment.
  • 327
  • 25 Nov 2022
  • Page
  • of
  • 6