Topic Review
Nuclear Physics Opportunities at European Small-Scale Facilities
Small-scale facilities play a significant role in the landscape of nuclear physics research in Europe. They address a wide range of fundamental questions and are essential for teaching and training personnel in accelerator technology and science, providing them with diverse skill sets, complementary to large projects.  The current status, available instrumentation, as well as perspectives of nuclear physics research at small-scale facilities are given. To obtain a complete overview, a few medium-scale facilities—the INFN Laboratori Nazionali del Sud, IJC Lab, and the Jyväskylä Accelerator Laboratory—are also described.
  • 127
  • 18 Jan 2024
Topic Review
Halide Perovskites Films for Ionizing Radiation Detection
Halide perovskites are a novel class of semiconductors that have attracted great interest due to their peculiar properties of interest for optoelectronics. In fact, their use ranges from the field of sensors and light emitters to ionizing radiation detectors. Since 2015, ionizing radiation detectors exploiting perovskite films as active media have been developed. 
  • 250
  • 15 Jun 2023
Topic Review
Control and Upgradation of Indoor Air Quality
Due to increasing health and environmental issues, indoor air quality (IAQ) has garnered much research attention with regard to incorporating advanced clean air technologies. Various physicochemical air treatments have been used to monitor, control, and manage air contaminants, such as monitoring devices (gas sensors and internet of things-based systems), filtration (mechanical and electrical), adsorption, UV disinfection, UV photocatalysts, a non-thermal plasma approach, air conditioning systems, and green technologies (green plants and algae).
  • 606
  • 24 Feb 2023
Biography
Karl Wirtz
Karl Eugen Julius Wirtz (24 April 1910 – 12 February 1994) was a German nuclear physicist, born in Cologne. He was arrested by the allied British and American Armed Forces and incarcerated at Farm Hall for six months in 1945 under Operation Epsilon. From 1929 to 1934, Wirtz studied physics, chemistry, and mathematics at the University of Bonn, the Albert Ludwigs University of Freiburg, and
  • 362
  • 08 Dec 2022
Topic Review
Transmission Electron Microscopy
Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. Transmission electron microscopes are capable of imaging at a significantly higher resolution than light microscopes, owing to the smaller de Broglie wavelength of electrons. This enables the instrument to capture fine detail—even as small as a single column of atoms, which is thousands of times smaller than a resolvable object seen in a light microscope. Transmission electron microscopy is a major analytical method in the physical, chemical and biological sciences. TEMs find application in cancer research, virology, and materials science as well as pollution, nanotechnology and semiconductor research, but also in other fields such as paleontology and palynology. TEM instruments have multiple operating modes including conventional imaging, scanning TEM imaging (STEM), diffraction, spectroscopy, and combinations of these. Even within conventional imaging, there are many fundamentally different ways that contrast is produced, called "image contrast mechanisms". Contrast can arise from position-to-position differences in the thickness or density ("mass-thickness contrast"), atomic number ("Z contrast", referring to the common abbreviation Z for atomic number), crystal structure or orientation ("crystallographic contrast" or "diffraction contrast"), the slight quantum-mechanical phase shifts that individual atoms produce in electrons that pass through them ("phase contrast"), the energy lost by electrons on passing through the sample ("spectrum imaging") and more. Each mechanism tells the user a different kind of information, depending not only on the contrast mechanism but on how the microscope is used—the settings of lenses, apertures, and detectors. What this means is that a TEM is capable of returning an extraordinary variety of nanometer- and atomic-resolution information, in ideal cases revealing not only where all the atoms are but what kinds of atoms they are and how they are bonded to each other. For this reason TEM is regarded as an essential tool for nanoscience in both biological and materials fields. The first TEM was demonstrated by Max Knoll and Ernst Ruska in 1931, with this group developing the first TEM with resolution greater than that of light in 1933 and the first commercial TEM in 1939. In 1986, Ruska was awarded the Nobel Prize in physics for the development of transmission electron microscopy.
  • 2.5K
  • 05 Dec 2022
Topic Review
Strangeness Production
Strangeness production is a signature and a diagnostic tool of quark–gluon plasma (or QGP) formation and properties. Unlike up and down quarks, from which everyday matter is made, strange quarks are formed in pair-production processes in collisions between constituents of the plasma. The dominant mechanism of production involves gluons only present when matter has become a quark–gluon plasma. When quark–gluon plasma disassembles into hadrons in a breakup process, the high availability of strange antiquarks helps to produce antimatter containing multiple strange quarks, which is otherwise rarely made. Similar considerations are at present made for the heavier charm flavor, which is made at the beginning of the collision process in the first interactions and is only abundant in the high-energy environments of CERN's Large Hadron Collider.
  • 732
  • 02 Dec 2022
Topic Review
Precursor
Precursors are characteristic wave patterns caused by dispersion of an impulse's frequency components as it propagates through a medium. Classically, precursors precede the main signal, although in certain situations they may also follow it. Precursor phenomena exist for all types of waves, as their appearance is only predicated on the prominence of dispersion effects in a given mode of wave propagation. This non-specificity has been confirmed by the observation of precursor patterns in different types of electromagnetic radiation (microwaves, visible light, and terahertz radiation) as well as in fluid surface waves and seismic waves.
  • 633
  • 02 Dec 2022
Topic Review
Transactinide Element
In chemistry, transactinide elements (also, transactinides, or super-heavy elements) are the chemical elements with atomic numbers from 104 to 120. Their atomic numbers are immediately greater than those of the actinides, the heaviest of which is lawrencium (atomic number 103). Glenn T. Seaborg first proposed the actinide concept, which led to the acceptance of the actinide series. He also proposed the transactinide series ranging from element 104 to 121 and the superactinide series approximately spanning elements 122 to 153. The transactinide seaborgium was named in his honor. By definition, transactinide elements are also transuranic elements, i.e. have an atomic number greater than uranium (92). The transactinide elements all have electrons in the 6d subshell in their ground state. Except for rutherfordium and dubnium, even the longest-lasting isotopes of transactinide elements have extremely short half-lives, measured in seconds, or smaller units. The element naming controversy involved the first five or six transactinide elements. These elements thus used systematic names for many years after their discovery had been confirmed. (Usually the systematic names are replaced with permanent names proposed by the discoverers relatively shortly after a discovery has been confirmed.) Transactinides are radioactive and have only been obtained synthetically in laboratories. None of these elements has ever been collected in a macroscopic sample. Transactinide elements are all named after physicists and chemists or important locations involved in the synthesis of the elements. IUPAC defines an element to exist if its lifetime is longer than 10−14 seconds, which is the time it takes for the nucleus to form an electron cloud.
  • 2.7K
  • 01 Dec 2022
Topic Review
Large Extra Dimension
In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. (Why is the force of gravity so weak compared to the electromagnetic force and the other fundamental forces?) The model tries to explain this problem by postulating that our universe, with its four dimensions (three spatial ones plus time), exists on a so called membrane floating in 11-dimensional space. It is then suggested that the other forces of nature (the electromagnetic force, strong interaction, and weak interaction) operate within this membrane and its four dimensions, while gravity can operate across all 11 dimensions. This would explain why gravity is very weak compared to the other fundamental forces. This is a radical theory given that the other 7 dimensions, which we do not observe, previously have been assumed to be very small (about a planck-length), while this theory asserts that they might be very large. The model was proposed by Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali in 1998. Attempts to test the theory are executed by smashing together two protons in the Large Hadron Collider so that they disperse and release elementary particles. If a postulated graviton appeared after a collision, for such a particle to disappear, and its disappearance be observed, that would suggest that the graviton had escaped into other dimensions beyond our universe's observable four. No experiments from the Large Hadron Collider have been decisive thus far. However, the operation range of the LHC (13 TeV collision energy) covers only a small part of the predicted range in which evidence for LED would be recorded (a few TeV to 1016 TeV). This suggests that the theory might be more thoroughly tested with advanced technology.
  • 337
  • 01 Dec 2022
Topic Review
Osmium-194
Osmium (76Os) has seven naturally occurring isotopes, five of which are stable: 187Os, 188Os, 189Os, 190Os, and (most abundant) 192Os. The other natural isotopes, 184Os, and 186Os, have extremely long half-life (1.12×1013 years and 2×1015 years, respectively) and for practical purposes can be considered to be stable as well. 187Os is the daughter of 187Re (half-life 4.56×1010 years) and is most often measured in an 187Os/188Os ratio. This ratio, as well as the 187Re/188Os ratio, have been used extensively in dating terrestrial as well as meteoric rocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. However, the most notable application of Os in dating has been in conjunction with iridium, to analyze the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the dinosaurs 66 million years ago. There are also 30 artificial radioisotopes, the longest-lived of which is 194Os with a half-life of six years; all others have half-lives under 94 days. There are also nine known nuclear isomers, the longest-lived of which is 191mOs with a half-life of 13.10 hours. All isotopes and nuclear isomers of osmium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.
  • 258
  • 01 Dec 2022
  • Page
  • of
  • 9