Topic Review
Alterations in Vascular Chloride Channels and Transporters
Blood pressure is determined by cardiac output and systemic vascular resistance, and mediators that induce vasoconstriction will increase systemic vascular resistance and thus elevate blood pressure. While peripheral vascular resistance reflects a complex interaction of multiple factors, vascular ion channels and transporters play important roles in the regulation of vascular tone by modulating the membrane potential of vascular cells. In vascular smooth muscle cells, chloride ions (Cl−) are a type of anions accumulated by anion exchangers and the anion–proton cotransporter system, and efflux of Cl− through Cl− channels depolarizes the membrane and thereby triggers vasoconstriction. Among these Cl− regulatory pathways, emerging evidence suggests that upregulation of the Ca2+-activated Cl− channel TMEM16A in the vasculature contributes to the increased vascular contractility and elevated blood pressure in hypertension. A robust accumulation of intracellular Cl− in vascular smooth muscle cells through the increased activity of Na+–K+–2Cl− cotransporter 1 (NKCC1) during hypertension has also been reported. Thus, the enhanced activity of both TMEM16A and NKCC1 could act additively and sequentially to increase vascular contractility and hence blood pressure in hypertension.
  • 350
  • 22 Sep 2022
Topic Review
Antineutrophil Cytoplasmatic Antibody-Associated Vasculitis
Antineutrophil cytoplasmatic antibody (ANCA)-associated vasculitis (AAV) is a group of rare autoimmune diseases characterized by inflammation of the vascular wall. The pathogenesis of AAV is strongly associated with B cell-derived ANCAs; thus, Rituximab (RTX) has become a promising drug in the induction and maintenance treatment of AAV.
  • 556
  • 02 Sep 2021
Topic Review
Applications of Computed Tomography in Peripheral Artery Disease
Peripheral artery disease (PAD) is a common and debilitating condition characterized by the narrowing of the limb arteries, primarily due to atherosclerosis. Non-invasive multi-modality imaging approaches using computed tomography (CT), magnetic resonance imaging (MRI), and nuclear imaging have emerged as valuable tools for assessing PAD atheromatous plaques and vessel walls.
  • 164
  • 20 Jul 2023
Topic Review
Biomarkers in Venous Thromboembolism
The field of venous thromboembolism has undergone numerous innovations, starting from the recent discoveries on the role of biomarkers, passing through the role of metabolomics in expanding the knowledge on pathogenic mechanisms, which have opened up new therapeutic targets. A variety of studies have contributed to characterizing the metabolic phenotype that occurs in venous thromboembolism, identifying numerous pathways that are altered in this setting.
  • 149
  • 14 Sep 2023
Topic Review
Blood-brain Barrier and MSC
Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. 
  • 396
  • 05 May 2021
Topic Review
Coagulation System in Peripheral Arterial Disease
Peripheral artery disease (PAD) is a clinical manifestation of atherosclerotic disease with a large-scale impact on the economy and global health. Histopathological analysis and some clinical studies conducted on atherosclerotic plaques testify to the existence of different types of plaques. Likely, the role of coagulation in each specific type of plaque can be an important determinant in the histopathological composition of atherosclerosis and in its future stability.
  • 385
  • 20 Dec 2022
Topic Review
Complications of Diabetes and Diabetic Foot
Globally, a leg is amputated approximately every 30 seconds, with an estimated 85 percent of these amputations being attributed to complications arising from diabetic foot ulcers (DFU), as stated by the American Diabetes Association. Peripheral arterial disease (PAD) is a risk factor resulting in DFU and can, either independently or in conjunction with diabetes, lead to recurring, slow-healing ulcers and amputations. 
  • 102
  • 29 Dec 2023
Topic Review
COVID-19 Pathogenesis
The Coronavirus 2 (SARS-CoV-2) infection is a global pandemic that has affected millions of people worldwide. The advent of vaccines has permitted some restitution. Aside from the respiratory complications of the infection, there is also a thrombotic risk attributed to both the disease and the vaccine.
  • 442
  • 16 Sep 2021
Topic Review
CSC and Neovascularization
Cancer stem cells (CSCs) refer to a subpopulation of tumor cells that have abilities to self-renew, differentiate, and seed new tumors, they might be taking part in tumor-associated angiogenesis via trans-differentiation or forming the capillary-like vascular mimicry (VM) in the tumor microenvironment. CSC-associated tumor neovascularization partially contributes to the failure of cancer treatment. The study of CSCs transdifferentiating to endothelial cells or pericytes can provide a new insight in the understanding of tumor progression and relapse.
  • 564
  • 23 Nov 2021
Topic Review
Cytoplasmic Actins in Endothelial Cell
The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle β-cytoplasmic and γ-cytoplasmic actins (β-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the β/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. 
  • 437
  • 09 Aug 2021
  • Page
  • of
  • 3