Topic Review
Methods for Recycling Heterogenous Catalysts
The rapid separation and efficient recycling of catalysts after a catalytic reaction are considered important requirements along with the high catalytic performances. In this view, although heterogeneous catalysis is generally less efficient if compared to the homogeneous type, it is generally preferred since it benefits from the easy recovery of the catalyst. Recycling of heterogeneous catalysts using traditional methods of separation such as extraction, filtration, vacuum distillation, or centrifugation is tedious and time-consuming. They are uneconomic processes and, hence, they cannot be carried out in the industrial scale.
  • 3.3K
  • 23 Jun 2021
Topic Review
Metal Sulfide Precipitation
Metal sulfide precipitation can efficiently recover several metals and metalloids from different aqueous sources, including wastewaters and hydrometallurgical solutions. 
  • 3.0K
  • 04 Jan 2022
Topic Review
Membrane Technologies in Dairy Industry
Membrane technologies can be used in the dairy industry for many applications, such as milk clarification or fractioning and a concentration increase in specific components or the separation of them, since they cover a huge range of pore sizes (from 0 to 2 μm) and MWCOs (from 1 to 100,000 Da). For instance, MF can be used for fat globule (10 μm) fractionation as well as bacteria and spore (1 μm) removal. UF can be used for casein micelles (100 nm) or serum protein (10 nm) separation, whereas NF and RO can be used for lactose (1 nm), salt (0.1 nm) and water recovery.
  • 686
  • 18 Nov 2021
Topic Review
Membrane in a Microbial Fuel Cell
Microbial fuel cells (MFC) are an emerging technology for wastewater treatment that utilizes the metabolism of microorganisms to generate electricity from the organic matter present in water directly.
  • 1.4K
  • 20 Jan 2022
Topic Review
Membrane Bioreactors and Hydrogenotrophic Denitrification
Due to low sludge production and being a clean source without residuals, hydrogen-based autotrophic denitrification appears to be a promising choice for nitrate removal from agricultural drainage waters or water/wastewater with a similar composition. Although the incorporation of hydrogen-based autotrophic denitrification with membrane bioreactors (MBRs) enabled almost 100% utilization of hydrogen, the technology still needs to be improved to better utilize its advantages.
  • 285
  • 31 Jul 2023
Topic Review
Membrane Bioreactor for Removal of Dyes
Access to clean water is crucial for human health and the advancement of society. However, the decline in water quality has become a serious global issue due to human activities. The United Nations introduced 17 Sustainable Development Goals (SDGs) with the aim of creating a sustainable future for all humankind. One of the most significant of these goals is “Clean Water and Sanitation for All”. However, the discharge of various contaminants into aquatic environments impedes progress towards achieving SDG6. Among industrial effluents, the textile and dye industries are considered to be major contributors to wastewater production. Dyestuffs, which are synthetic, complex aromatic compounds, and ionizing agents, are widely used as coloring agents in industries such as paper, textiles, food, dyeing, and cooking. Following the dyeing process, approximately 15% of the used dyes remain in the wastewater stream, making the colored wastewater effluent a major concern. Conventional wastewater treatment plants have difficulty in removing such chemicals, resulting in over 200,000 tons of dyes being discharged each year in the environment. The release of dyes results in water pollution with resistant compounds that are not easily broken down by natural degradation processes. Several methods have been established for treating dyes from water bodies, including physicochemical and biological approaches. Physicochemical methods, such as membrane filtration, adsorption, ion exchange, advanced oxidation processes (AOPs), and coagulation, have limitations in the removal of dyes due to high cost, inefficiency, and the potential for secondary pollution. In contrast, biological treatment methods, such as membrane bioreactors (MBRs), are cost-effective, safe, environmentally friendly, and efficient for removing dyes. Among the various biological treatment methods, MBRs are regarded as one of the most effective methods for treating wastewater. MBRs are a combination of units for biological degradation and physical filtration
  • 429
  • 21 Mar 2023
Topic Review
Mechanism of Advanced Oxidation Processes
Advanced oxidation processes (AOPs) involves the generation of powerful oxidizing radical groups, such as hydroxyl radicals, which function as oxidizing agents and mineralize organic chemical substances into CO2 and H2O. AOPs such as photocatalysis and photo-Fenton have been widely considered to be very effective in removing persistent organic pollutants.
  • 1.0K
  • 28 Mar 2023
Topic Review
Materials Science, Glasses
Glasses are solid amorphous materials which transform into liquids upon heating through the glass transition. The International Commission on Glass defines glass as a state of matter, usually produced when a viscous molten material is cooled rapidly to below its glass transition temperature, with insufficient time for a regular crystal lattice to form. The solid-like behaviour of glasses is separated from the liquid-like behaviour at higher temperatures by the glass transition temperature, Tg. The IUPAC Compendium on Chemical Terminology defines glass transition as a second order transition in which a supercooled melt yields, on cooling, a glassy structure. It states that below the glass-transition temperature the physical properties of glasses vary in a manner similar to those of the crystalline phase. Moreover, it is deemed that the bonding structure of glasses has the same symmetry signature in terms of Hausdorff-Besikovitch dimensionality of chemical bonds as for the crystalline materials. 
  • 3.6K
  • 09 May 2024
Topic Review
Management of Sewage Sludge from Municipal Wastewater Purification
Municipal sewage sludge (MSS) is the residual material produced as a waste of municipal wastewater purification. It is a sophisticated multi-component material, hard to handle. For many years, it has been landfilled, incinerated, and widely used in agriculture practice. When unproperly discharged, it is very polluting and unhealthy. The rapidly increasing global amount of municipal sewage sludge produced annually depends on urbanization, degree of development, and lifestyle. Some diffused traditional practices were banned or became economically unfeasible or unacceptable by the communities. In contrast, it has been established that MSS contains valuable resources, which can be utilized as energy and fertilizer. Ambitious and costly plans for remediation, the modernization of regulations, collecting and purification systems, and beneficial waste management using a modern approach. The activated sludge process is the leading technology for wastewater purification, and anaerobic digestion is the leading technology for downstream waste. However, biological technologies appear inadequate and hydrothermal carbonization, already applicable at full scale, is the best candidate for playing a significant role in managing municipal sewage sludge produced by big towns and small villages.
  • 1.4K
  • 25 Aug 2022
Topic Review
Low-GWP Refrigerants (Pure and Blended)
Low global warming potential (GWP) refrigerants for the next-generation air conditioning systems have been investigated with target domestic applications. High-GWP refrigerants are mostly used in climate control applications such as heating, ventilation and air conditioning (HVAC) and refrigeration systems. 
  • 1.7K
  • 15 Nov 2022
  • Page
  • of
  • 31
ScholarVision Creations