Topic Review
Production of Electrolytic Manganese Dioxide
The ferromanganese (FeMn) alloy is produced through the smelting-reduction of manganese ores in submerged arc furnaces. This process generates large amounts of furnace dust that is environmentally problematic for storage. Due to its fineness and high volatile content, this furnace dust cannot be recirculated through the process, either. Conventional MnO2 production requires the pre-reduction of low-grade ores at around 900 °C to convert the manganese oxides present in the ore into their respective acid-soluble forms; however, the furnace dust is a partly reduced by-product. A hydrometallurgical route is proposed to valorize the waste dust for the production of battery-grade MnO2. By using dextrin, a cheap organic reductant, the direct and complete dissolution of the manganese in the furnace dust is possible without any need for high-temperature pre-reduction. The leachate is then purified through pH adjustment followed by direct electrowinning for electrolytic manganese dioxide (EMD) production. An overall manganese recovery rate of >90% is achieved. 
  • 3.9K
  • 08 Jul 2021
Topic Review
Additive Manufacturing of Turbine Blades
Additive manufacturing is a technology of transforming a 3D prototype to a physical one directly by successive addition of the required material in a layer-by-layer manner. This technique helps to manufacture the turbine blade which is the revolution of green technology for high temperature engine parts.
  • 3.0K
  • 11 Oct 2022
Topic Review
Material Extrusion Additive Manufacturing of Metal
Material extrusion additive manufacturing of metal (metal MEX), which is one of the 3D printing processes, has gained more interests because of its simplicity and economics. Metal MEX process is similar to the conventional metal injection moulding (MIM) process, consisting of feedstock preparation of metal powder and polymer binders, layer-by-layer 3D printing (metal MEX) or injection (MIM) to create green parts, debinding to remove the binders and sintering to create the consolidated metallic parts.
  • 3.0K
  • 02 Jun 2022
Topic Review
LD-Steelmaking
Basic Oxygen Furnace (BOF) steelmaking is, worldwide, the most frequently applied process. According to the world steel organization statistical report, 2021, it saw a total production share of 73.2%, or 1371.2 million tons per year of the world steel production in 2020. The rest is produced in Electric Arc Furnace (EAF)-based steel mills (26.3%), and only a very few open-hearth and induction furnace-based steel mills. The BOF technology remains the leading technology applied based on its undoubted advantages in productivity and liquid steel composition control. The BOF technology started as the LD process 70 years ago, with the first heat applied in November 1952 in a steel mill in Linz, Austria. The name LD was formed from the first letters of the two sites with the first industrial scale plants, Linz and Donawitz, both in Austria. The history and development of the process have been honored in multiple anniversary publications over the last few decades. Nevertheless, the focus of the steel industry worldwide is significantly changing following a social and political trend and the requirement for fossil-free energy generation and industrial production to be in accordance with the world climate targets committed to in relation to the decades leading up to 2050.
  • 2.5K
  • 09 Jun 2022
Topic Review
Development of Bottom-Blowing Copper Smelting Technology
Bottom-blowing copper smelting technology was initiated and developed in China in the 1990s. Injection of oxygen-enriched high-pressure gas strongly stirs the molten bath consisting of matte and slag. Rapid reaction at relatively lower temperatures and good adaptability of the feed materials are the main advantages of this technology. Development and optimisation of bottom-blowing copper smelting technology were supported by extensive studies on the thermodynamics of the slag and the fluid dynamic of the molten bath.
  • 2.3K
  • 26 Jan 2022
Topic Review
Continuous Casting Practices for Steel
Continuous casting practices for steelmaking have been constantly evolving ever since the early 1930s, when Junghans was first researching ways to pour liquid steel into an open-bottomed, water-cooled mold, to withdraw the partially solidified steel out of it, continuously, in the form of a round or square billet or slab. He envisioned that once these continuously cast shapes had become fully frozen, their solidified ends could be cut off for further processing. In this way, they could be transformed into “rebar” to reinforce concrete, or into bars from which nails, bolts, tire cord wire, etc., could be fashioned, etc. However, long before that, Sir Henry Bessemer had proposed a far more elegant approach, involving two, contra-rotating rolls, into which liquid steel is poured, to produce a thin solidified sheet of steel directly, within a few milliseconds. This is referred to as a Near Net Shape Casting Process. After 150 years of trying, CASTRIP, a subsidiary of NUCOR, BHP, and IHI, made this process a commercial success, where many previous attempts had failed. However, there is an even better NNSC process, referred to as HSBC, or "Horizontal Single Belt Casting", that has also been commercially successful. The HSBC process is capable of casting many different grades of steel, unlike the Bessemer CASTRIP process, by casting ~10 - 15mm thick strips, that can then be rolled down to a final sheet ~1.5 - 0.5mm. thickness, in a one-step continuous process.  
  • 1.9K
  • 06 Jun 2022
Topic Review
Flake Powder Metallurgy
Flake powder metallurgy (FPM) including different processing routes, conventional FPM (C-FPM), slurry blending (SB), shift-speed ball milling (SSBM), and high-shear pre-dispersion and SSBM (HSPD/SSBM). The name of FPM was derived from the use of flake metal powders obtained by low-speed ball milling (LSBM) from spherical powder. The uniformity of reinforcement distribution leads to increased strength and ductility. Powder is the basic unit in PM, especially advanced PM, and its control is key to various new PM technologies. The FPM is a typical method for finely controlling the powder shape through low-energy ball milling (LEBM) to realize the preparation of advanced material structures. 
  • 1.8K
  • 23 Jun 2021
Topic Review
Roll Bonding Processes
The roll bonding (RB) process involves joining of two or more sheets of similar or dissimilar materials at various temperatures. The process requires rolling through a pair of rollers under adequate pressure resulting in the bonding of sheets. The process is categorized into three types, i.e., cold, hot, and warm roll bonding based on the ranges of the processing temperature which in turn is related to the recrystallization temperature.
  • 1.7K
  • 03 Sep 2021
Topic Review
Metallurgical Coke Structures
The structure of coke affects its reactivity and strength, which directly influences its performance in the blast furnace.
  • 1.6K
  • 11 Feb 2022
Topic Review
Void Nucleation in Metals
The research discussed about the development of micro-voids in metals, leading to ductile fracture, associated with plastic deformation, without taking into account the cleavage mechanism. Particular emphasis was placed on the results of observations and experimental studies, the characteristics of the phenomenon itself, without in-depth analysis in the field of widely used FEM modelling. The mechanism of void development as a fracture mechanism is presented. Observations of the nucleation of voids in metals from the turn of the 1950s and 1960s to the present day have been described. The nucleation mechanisms related to the defects of the crystal lattice as well as those resulting from the presence of second phase particles were characterised.
  • 1.5K
  • 08 Oct 2022
  • Page
  • of
  • 9