Topic Review
Enzyme-Catalyzed Synthesis of Polyesters
Polyester is a kind of polymer composed of ester bond-linked polybasic acids and polyol. This type of polymer has a wide range of applications in various industries, such as automotive, furniture, coatings, packaging, and biomedical. The traditional process of synthesizing polyester mainly uses metal catalyst polymerization under high-temperature. This condition may have problems with metal residue and undesired side reactions. As an alternative, enzyme-catalyzed polymerization is evolving rapidly due to the metal-free residue, satisfactory biocompatibility, and mild reaction conditions.   
  • 625
  • 20 Dec 2022
Topic Review
Versatile Polyaniline-Based Polymers in Food Industry
Intrinsically conducting polymers (ICPs) have been widely studied in various applications, such as sensors, tissue engineering, drug delivery, and semiconductors. Specifically, polyaniline (PANI) stands out in food industry applications due to its advantageous reversible redox properties, electrical conductivity, and simple modification. The rising concerns about food safety and security have encouraged the development of PANI as an antioxidant, antimicrobial agent, food freshness indicator, and electronic nose. At the same time, it plays an important role in food safety control to ensure the quality of food.
  • 518
  • 14 Dec 2022
Topic Review
Recycling of High-Molecular-Weight Organosilicon Compounds in Supercritical Fluids
The main known patterns of thermal and/or catalytic destruction of high-molecular-weight organosilicon compounds are considered from the viewpoint of the prospects for processing their wastes. The advantages of using supercritical fluids in plastic recycling are outlined in this entry. They are related to a high diffusion rate, efficient extraction of degradation products, the dependence of solvent properties on pressure and temperature, etc. A promising area for further research is described concerning the application of supercritical fluids for processing the wastes of organosilicon macromolecular compounds.
  • 555
  • 14 Dec 2022
Topic Review
Hydrogels as Biomaterials for Wound Dressings
Wound management remains a challenging issue around the world, although a lot of wound dressing materials have been produced for the treatment of chronic and acute wounds. Wound healing is a highly dynamic and complex regulatory process that involves four principal integrated phases, including hemostasis, inflammation, proliferation, and remodeling. Chronic non-healing wounds are wounds that heal significantly more slowly, fail to progress to all the phases of the normal wound healing process, and are usually stalled at the inflammatory phase. These wounds cause a lot of challenges to patients, such as severe emotional and physical stress and generate a considerable financial burden on patients and the general public healthcare system. It has been reported that about 1–2% of the global population suffers from chronic non-healing wounds during their lifetime in developed nations. Traditional wound dressings are dry, and therefore cannot provide moist environment for wound healing and do not possess antibacterial properties. Wound dressings that are currently used consist of bandages, films, foams, patches and hydrogels. Currently, hydrogels are gaining much attention as a result of their water-holding capacity, providing a moist wound-healing milieu. 
  • 653
  • 12 Dec 2022
Topic Review
Poly(Ionic Liquid) Materials-Based Advanced Formulations for Additive Manufacturing
Innovation in materials specially formulated for additive manufacturing is of great interest and can generate new opportunities for designing cost-effective smart materials for next-generation devices and engineering applications. Nevertheless, advanced molecular and nanostructured systems are frequently not possible to integrate into 3D printable materials, thus limiting their technological transferability. In some cases, this challenge can be overcome using polymeric macromolecules of ionic nature, such as polymeric ionic liquids (PILs). Due to their tuneability, wide variety in molecular composition, and macromolecular architecture, they show a remarkable ability to stabilize molecular and nanostructured materials. The technology resulting from 3D-printable PIL-based formulations represents an untapped array of potential applications, including optoelectronic, antimicrobial, catalysis, photoactive, conductive, and redox applications.
  • 763
  • 08 Dec 2022
Topic Review
Waste Plastics’ Liquefaction into Fuel Fraction
Polymers and plastics are crucial materials in many sectors of our economy, due to their numerous advantages. They also have some disadvantages, among the most important are problems with the recycling and disposal of used plastics. The recovery of waste plastics is increasing every year, but over 27% of plastics are landfilled. The rest is recycled, where, unfortunately, incineration is still the most common management method. From an economic perspective, waste management methods that lead to added-value products are most preferred—as in the case of material and chemical recycling. Since chemical recycling can be used for difficult wastes (poorly selected, contaminated), it seems to be the most effective way of managing these materials. Moreover, as a result this of kind of recycling, it is possible to obtain commercially valuable products, such as fractions for fuel composition and monomers for the reproduction of polymers. 
  • 708
  • 06 Dec 2022
Topic Review
Classification of Advanced Polymers by Application in Food/Beverages
Polymers are extensively used in food and beverage packaging to shield against contaminants and external damage due to their barrier properties, protecting the goods inside and reducing waste.  In addition to protecting the edible goods inside any package, researchers in polymers for food and beverage applications have leapt to develop polymers for advanced applications.
  • 917
  • 01 Dec 2022
Topic Review
Methods of Preparation of UHMWPE Membranes
One of the materials that attracts attention as a potential material for membrane formation is ultrahigh molecular weight polyethylene (UHMWPE). The methods used to prepare membranes from semicrystalline (SC) polymers, including UHMWPE, can be divided into two main groups: solvent-free and solvent-based methods.
  • 969
  • 30 Nov 2022
Topic Review
Plastic Waste Upcycling Approaches
Plastic waste pollution, including non-biodegradable landfills, leaching of toxic chemicals into soil and waterways, and emission of toxic gases into the atmosphere, is significantly affecting our environment. Conventional plastic waste recycling approaches generally produce lower-value materials compared to the original plastic or recover inefficient heat energy. Lately, upcycling or the valorization approach has emerged as a sustainable solution to transform plastic waste into value-added products.
  • 532
  • 30 Nov 2022
Topic Review
General Synthesis Methods of Poly (ε-caprolactone)-Based Graft Copolymers
Synthetic biopolymers are attractive alternatives to biobased polymers, especially because they rarely induce an immune response in a living organism. Poly ε-caprolactone (PCL) is a well-known synthetic aliphatic polyester universally used for many applications, including biomedical and environmental ones.  To expand the range of applications for PCL, researchers have investigated the possibility of grafting polymer chains onto the PCL backbone. As the PCL backbone is not functionalized, it must be first functionalized in order to be able to graft reactive groups onto the PCL chain. These reactive groups will then allow the grafting of new reagents and especially new polymer chains. Grafting of polymer chains is mainly carried out by “grafting from” or “grafting onto” methods.
  • 587
  • 29 Nov 2022
  • Page
  • of
  • 46
ScholarVision Creations