Topic Review
Heliophysics NASA Science
Heliophysics is an aspect of NASA science that enables understanding the Sun, heliosphere, and planetary environments as a single connected system. In addition to solar processes, this domain of study includes the interaction of solar plasma and solar radiation with Earth, the other planets, and the galaxy. By analyzing the connections between the Sun, solar wind, and planetary space environments, the fundamental physical processes that occur throughout the universe are uncovered. Understanding the connections between the Sun and its planets will allow for predicting the impacts of solar interaction on humans, technological systems, and even the presence of life itself. This is also the stated goal of Science Mission Directorate's Heliophysics Research.
  • 282
  • 25 Oct 2022
Topic Review
Osmium-164
Osmium (76Os) has seven naturally occurring isotopes, five of which are stable: 187Os, 188Os, 189Os, 190Os, and (most abundant) 192Os. The other natural isotopes, 184Os, and 186Os, have extremely long half-life (1.12×1013 years and 2×1015 years, respectively) and for practical purposes can be considered to be stable as well. 187Os is the daughter of 187Re (half-life 4.56×1010 years) and is most often measured in an 187Os/188Os ratio. This ratio, as well as the 187Re/188Os ratio, have been used extensively in dating terrestrial as well as meteoric rocks. It has also been used to measure the intensity of continental weathering over geologic time and to fix minimum ages for stabilization of the mantle roots of continental cratons. However, the most notable application of Os in dating has been in conjunction with iridium, to analyze the layer of shocked quartz along the Cretaceous–Paleogene boundary that marks the extinction of the dinosaurs 66 million years ago. There are also 30 artificial radioisotopes, the longest-lived of which is 194Os with a half-life of six years; all others have half-lives under 94 days. There are also nine known nuclear isomers, the longest-lived of which is 191mOs with a half-life of 13.10 hours. All isotopes and nuclear isomers of osmium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.
  • 258
  • 25 Oct 2022
Topic Review
Advanced Technology Large-Aperture Space Telescope
The Advanced Technology Large-Aperture Space Telescope (ATLAST) is an 8– to 16.8–meter UV-optical-NIR space telescope proposed by the Space Telescope Science Institute (STScI), the science operations center for the Hubble Space Telescope (HST). If launched, ATLAST would be a replacement and successor for the HST, with the ability to obtain spectroscopic and imaging observations of astronomical objects in the ultraviolet, optical, and infrared wavelengths, but with substantially better resolution than either HST or the planned James Webb Space Telescope (JWST). Like JWST, ATLAST would be launched to the Sun-Earth L2 Lagrange point. ATLAST is envisioned as a flagship mission of the 2025–2035 period, designed to determine whether there is life elsewhere in the galaxy. It would attempt to accomplish this by searching for "biosignatures" (such as molecular oxygen, ozone, water, and methane) in the spectra of terrestrial exoplanets. The backronym that the project currently uses, 'ATLAST', is in fact a pun. It refers to the time taken to decide on a true, visible-light, successor for the Hubble Space Telescope. However, it is expected that, as the project progresses, a new name would be chosen for the mission.
  • 1.0K
  • 25 Oct 2022
Topic Review
LIGO
The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These can detect a change in the 4 km mirror spacing of less than a ten-thousandth the charge diameter of a proton, equivalent to measuring the distance from Earth to Proxima Centauri (4.0208x1013km) with an accuracy smaller than the width of a human hair. The initial LIGO observatories were funded by the National Science Foundation (NSF) and were conceived, built, and are operated by Caltech and MIT. They collected data from 2002 to 2010 but no gravitational waves were detected. The Advanced LIGO Project to enhance the original LIGO detectors began in 2008 and continues to be supported by the NSF, with important contributions from the UK Science and Technology Facilities Council, the Max Planck Society of Germany, and the Australian Research Council. The improved detectors began operation in 2015. The detection of gravitational waves was reported in 2016 by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration with the international participation of scientists from several universities and research institutions. Scientists involved in the project and the analysis of the data for gravitational-wave astronomy are organized by the LSC, which includes more than 1000 scientists worldwide, as well as 440,000 active Einstein@Home users (As of December 2016). LIGO is the largest and most ambitious project ever funded by the NSF. In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne and Barry C. Barish "for decisive contributions to the LIGO detector and the observation of gravitational waves." "The Nobel Prize in Physics 2017". Nobel Foundation. https://www.nobelprize.org/nobel_prizes/physics/laureates/2017/press.html.  As of March 2018, LIGO has made six detections of gravitational waves, of which the first five were colliding black-hole pairs. The sixth detected event, on August 17, 2017, was the first detection of a collision of two neutron stars, which simultaneously produced optical signals detectable by conventional telescopes.
  • 1.5K
  • 25 Oct 2022
Topic Review
Meanings of Minor Planet Names: 1–1000
As minor planet discoveries are confirmed, they are given a permanent number by the IAU's Minor Planet Center (MPC), and the discoverers can then submit names for them, following the IAU's naming conventions. The list below concerns those minor planets in the specified number-range that have received names, and explains the meanings of those names. Official naming citations of newly named small Solar System bodies are published in MPC's Minor Planet Circulars several times a year. Recent citations can also be found on the JPL Small-Body Database (SBDB). Until his death in 2016, German astronomer Lutz D. Schmadel compiled these citations into the Dictionary of Minor Planet Names (DMP) and regularly updated the collection. Based on Paul Herget's The Names of the Minor Planets, Schmadel also researched the unclear origin of numerous asteroids, most of which had been named prior to World War II.  This article incorporates public domain material from the United States Government document "SBDB". New namings may only be added after official publication as the preannouncement of names is condemned by the Committee on Small Body Nomenclature.
  • 1.5K
  • 25 Oct 2022
Topic Review
Satellite System
A satellite system is a set of gravitationally bound objects in orbit around a planetary mass object (incl. sub-brown dwarfs and rogue planets) or minor planet, or its barycenter. Generally speaking, it is a set of natural satellites (moons), although such systems may also consist of bodies such as circumplanetary disks, ring systems, moonlets, minor-planet moons and artificial satellites any of which may themselves have satellite systems of their own (see Subsatellites). Some bodies also possess quasi-satellites that have orbits gravitationally influenced by their primary, but are generally not considered to be part of a satellite system. Satellite systems can have complex interactions including magnetic, tidal, atmospheric and orbital interactions such as orbital resonances and libration. Individually major satellite objects are designated in Roman numerals. Satellite systems are referred to either by the possessive adjectives of their primary (e.g. "Jovian system"), or less commonly by the name of their primary (e.g. "Jupiter system"). Where only one satellite is known, or it is a binary with a common centre of gravity, it may be referred to using the hyphenated names of the primary and major satellite (e.g. the "Earth-Moon system"). Many Solar System objects are known to possess satellite systems, though their origin is still unclear. Notable examples include the largest satellite system, the Jovian system, with 80 known moons (including the large Galilean moons) and the Saturnian System with 83 known moons (and the most visible ring system in the Solar System). Both satellite systems are large and diverse. In fact all of the giant planets of the Solar System possess large satellite systems as well as planetary rings, and it is inferred that this is a general pattern. Several objects farther from the Sun also have satellite systems consisting of multiple moons, including the complex Plutonian system where multiple objects orbit a common center of mass, as well as many asteroids and plutinos. Apart from the Earth-Moon system and Mars' system of two tiny natural satellites, the other terrestrial planets are generally not considered satellite systems, although some have been orbited by artificial satellites originating from Earth. Little is known of satellite systems beyond the Solar System, although it is inferred that natural satellites are common. J1407b is an example of an extrasolar satellite system. It is also theorised that Rogue planets ejected from their planetary system could retain a system of satellites.
  • 712
  • 25 Oct 2022
Topic Review
Charles Hard Townes Medal
The Charles Hard Townes Medal of The Optical Society is a prize for Quantum Electronics — that is to say, the physics of lasers. Awarded annually since 1981, it is named after the Nobel Prize-winning laser pioneer Charles H. Townes. Former winners include Nobel Prize laureates John L. Hall, Claude Cohen-Tannoudji, Serge Haroche, Arthur Ashkin, and Gérard Mourou.
  • 432
  • 25 Oct 2022
Topic Review
Riemannian Metric and Lie Bracket in Computational Anatomy
Computational anatomy (CA) is the study of shape and form in medical imaging. The study of deformable shapes in computational anatomy rely on high-dimensional diffeomorphism groups [math]\displaystyle{ \varphi \in \operatorname{Diff}_V }[/math] which generate orbits of the form [math]\displaystyle{ \mathcal{M} \doteq \{ \varphi \cdot m \mid \varphi \in \operatorname{Diff}_V \} }[/math]. In CA, this orbit is in general considered a smooth Riemannian manifold since at every point of the manifold [math]\displaystyle{ m \in \mathcal{M} }[/math] there is an inner product inducing the norm [math]\displaystyle{ \| \cdot \|_m }[/math] on the tangent space that varies smoothly from point to point in the manifold of shapes [math]\displaystyle{ m \in \mathcal{M} }[/math]. This is generated by viewing the group of diffeomorphisms [math]\displaystyle{ \varphi \in \operatorname{Diff}_V }[/math] as a Riemannian manifold with [math]\displaystyle{ \| \cdot \|_\varphi }[/math], associated to the tangent space at [math]\displaystyle{ \varphi \in\operatorname{Diff}_V }[/math] . This induces the norm and metric on the orbit [math]\displaystyle{ m \in \mathcal{M} }[/math] under the action from the group of diffeomorphisms.
  • 483
  • 25 Oct 2022
Topic Review
Relaxation
In the physical sciences, relaxation usually means the return of a perturbed system into equilibrium. Each relaxation process can be categorized by a relaxation time τ. The simplest theoretical description of relaxation as function of time t is an exponential law exp(-t/τ) (exponential decay).
  • 748
  • 25 Oct 2022
Topic Review
Marchywka Effect
The Marchywka effect refers to electrochemical cleaning of diamond using an electric field induced with remote electrodes.
  • 547
  • 25 Oct 2022
  • Page
  • of
  • 131
ScholarVision Creations