Biography
Fred Hoyle
Sir Fred Hoyle FRS (24 June 1915 – 20 August 2001)[1] was an English astronomer who formulated the theory of stellar nucleosynthesis. He also held controversial stances on other scientific matters—in particular his rejection of the "Big Bang" theory, a term coined by him on BBC radio, and his promotion of panspermia as the origin of life on Earth.[2][3][4] He also wrote science fiction nove
  • 886
  • 17 Nov 2022
Biography
John Ellis
Jonathan Richard Ellis CBE FRS HonFInstP (born 1 July 1946[1]) is a British theoretical physicist who is currently Clerk Maxwell Professor of Theoretical Physics at King's College London.[2] After completing his secondary education at Highgate School, he attended King's College, Cambridge, earning his PhD in theoretical (high-energy) particle physics in 1971. After brief post-doc positions in t
  • 1.1K
  • 17 Nov 2022
Topic Review
Rooftop Photovoltaic Power Station
A rooftop photovoltaic power station, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include photovoltaic modules, mounting systems, cables, solar inverters and other electrical accessories. Rooftop mounted systems are small compared to ground-mounted photovoltaic power stations with capacities in the megawatt range, hence being a form of distributed generation. Most rooftop PV stations in developed countries are Grid-connected photovoltaic power systems. Rooftop PV systems on residential buildings typically feature a capacity of about 5 to 20 kilowatts (kW), while those mounted on commercial buildings often reach 100 kilowatts to 1 Megawatt (MW). Very large roofs can house industrial scale PV systems in the range of 1-10 Megawatts.
  • 1.7K
  • 17 Nov 2022
Topic Review
Quantum-Optical Spectroscopy
Quantum-optical spectroscopy is a quantum-optical generalization of laser spectroscopy where matter is excited and probed with a sequence of laser pulses. Classically, such pulses are defined by their spectral and temporal shape as well as phase and amplitude of the electromagnetic field. Besides these properties of light, the phase-amplitude aspects have intrinsic quantum fluctuations that are of central interest in quantum optics. In ordinary laser spectroscopy, one utilizes only the classical aspects of laser pulses propagating through matter such as atoms or semiconductors. In quantum-optical spectroscopy, one additionally utilizes the quantum-optical fluctuations of light to enhance the spectroscopic capabilities by directly shaping and/or detecting the quantum fluctuations of light. Quantum-optical spectroscopy has applications in controlling and characterizing quantum dynamics of many-body states because one can directly access a large set of many-body states, which is not possible in classical spectroscopy.
  • 411
  • 17 Nov 2022
Topic Review
Enchroma
EnChroma lenses are glasses designed to improve and modify some aspects of color vision deficiency for color blind people. The glasses were invented by Dr. Donald McPherson in 2002. Wearing the glasses results in subtle differences when color blind people look longer and more carefully.
  • 505
  • 17 Nov 2022
Topic Review
Friction Force Microscope
In materials science, chemical force microscopy (CFM) is a variation of atomic force microscopy (AFM) which has become a versatile tool for characterization of materials surfaces. With AFM, structural morphology is probed using simple tapping or contact modes that utilize van der Waals interactions between tip and sample to maintain a constant probe deflection amplitude (constant force mode) or maintain height while measuring tip deflection (constant height mode). CFM, on the other hand, uses chemical interactions between functionalized probe tip and sample. Choice chemistry is typically gold-coated tip and surface with R–SH thiols attached, R being the functional groups of interest. CFM enables the ability to determine the chemical nature of surfaces, irrespective of their specific morphology, and facilitates studies of basic chemical bonding enthalpy and surface energy. Typically, CFM is limited by thermal vibrations within the cantilever holding the probe. This limits force measurement resolution to ~1 pN which is still very suitable considering weak COOH/CH3 interactions are ~20 pN per pair. Hydrophobicity is used as the primary example throughout this consideration of CFM, but certainly any type of bonding can be probed with this method.
  • 282
  • 17 Nov 2022
Topic Review
Energy Budgets in Growing Cities
Energy rate density is a useful metric to track the evolution of energy budgets, which help facilitate how well or badly human society trends toward winning or losing. The fates of nations and their cities are unknown, their success is not assured. Those nations and cities with rising per-capita energy usage while developing and those that are nearly flat while already developed seem destined to endure; those with falling energy usage seem likely to fail.
  • 402
  • 17 Nov 2022
Topic Review
Mars Multispectral Imager for Subsurface Studies
Mars Multispectral Imager for Subsurface Studies (MA-MISS) is a miniaturized imaging spectrometer designed to provide imaging and spectra by reflectance in the near-infrared (NIR) wavelength region and determine the mineral composition and stratigraphy. The instrument is part of the science payload on board the European Rosalind Franklin rover, tasked to search for biosignatures, and scheduled to land on Mars in spring 2023. MA-MISS is essentially inside a drill on the Rover, and will take measurements of the sub-surface directly. MA-MISS will help on the search for biosignatures by studying minerals and ices in situ before the collection of samples. The instrument is integrated within the Italian core drill system called DEEDRI, and it will be dedicated to in situ studies of the mineralogy inside the excavated holes in terms of visible and infrared spectral reflectance. The Principal Investigator is Maria Cristina De Sanctis, from the INAF (Istituto di Astrofisica Spaziale e Fisica Cosmica) in Italy.
  • 354
  • 16 Nov 2022
Topic Review
Onium Compound
In chemistry, an onium ion is a cation formally obtained by the protonation of mononuclear parent hydride of a pnictogen (group 15 of the periodic table), chalcogen (group 16), or halogen (group 17). The oldest-known onium ion, and the namesake for the class, is ammonium, NH+4, the protonated derivative of ammonia, NH3. The name onium is also used for cations that would result from the substitution of hydrogen atoms in those ions by other groups, such as organic radicals, or halogens; such as tetraphenylphosphonium, (C6H5)4P+. The substituent groups may be divalent or trivalent, yielding ions such as iminium and nitrilium. A simple onium ion has a charge of +1. A larger ion that has two onium ion subgroups is called a double onium ion, and has a charge of +2. A triple onium ion has a charge of +3, and so on. Compounds of an onium cation and some other negative ion are known as onium compounds or onium salts. Onium ions and onium compounds are inversely analogous to -ate ions and ate complexes:
  • 609
  • 16 Nov 2022
Topic Review
Coherence
In physics, two wave sources are coherent if their frequency and waveform are identical. Coherence is an ideal property of waves that enables stationary (i.e. temporally or spatially constant) interference. It contains several distinct concepts, which are limiting cases that never quite occur in reality but allow an understanding of the physics of waves, and has become a very important concept in quantum physics. More generally, coherence describes all properties of the correlation between physical quantities of a single wave, or between several waves or wave packets. Interference is the addition, in the mathematical sense, of wave functions. A single wave can interfere with itself, but this is still an addition of two waves (see Young's slits experiment). Constructive or destructive interference are limit cases, and two waves always interfere, even if the result of the addition is complicated or not remarkable. When interfering, two waves can add together to create a wave of greater amplitude than either one (constructive interference) or subtract from each other to create a wave of lesser amplitude than either one (destructive interference), depending on their relative phase. Two waves are said to be coherent if they have a constant relative phase. The amount of coherence can readily be measured by the interference visibility, which looks at the size of the interference fringes relative to the input waves (as the phase offset is varied); a precise mathematical definition of the degree of coherence is given by means of correlation functions. Spatial coherence describes the correlation (or predictable relationship) between waves at different points in space, either lateral or longitudinal. Temporal coherence describes the correlation between waves observed at different moments in time. Both are observed in the Michelson–Morley experiment and Young's interference experiment. Once the fringes are obtained in the Michelson interferometer, when one of the mirrors is moved away gradually from the beam-splitter, the time for the beam to travel increases and the fringes become dull and finally disappear, showing temporal coherence. Similarly, in a double-slit experiment, if the space between the two slits is increased, the coherence dies gradually and finally the fringes disappear, showing spatial coherence. In both cases, the fringe amplitude slowly disappears, as the path difference increases past the coherence length.
  • 2.3K
  • 16 Nov 2022
  • Page
  • of
  • 130
Video Production Service