Topic Review
Quantification of 5f Delocalization
By using M4,5 X-ray Emission Spectroscopy (XES) in the tender X-ray regime, it is possible to quantify 5f delocalization in the actinides. Previous analyses, utilizing the Branching Ratio (BR) in the N4,5 X-ray Absorption Spectroscopy (XAS), could not discriminate between the cases of localized n = 2 and delocalized n = 3, in uranium materials, where n is the number of 5f electrons on the U entity. Here, it is shown that, by employing the ubiquitous 6p→3d XES as a point of normalization, the localized n = 2 and delocalized n = 3 cases can be easily distinguished and quantified.
  • 813
  • 29 Oct 2020
Topic Review
Stellar Constellations in Fiction
Some stellar constellations have been featured in fictional works.
  • 812
  • 31 Oct 2022
Topic Review
PIXE and XRF in Heritage Science
Analytical techniques play a fundamental role in heritage science (HS). Among them, Particle Induced X-ray Emission (PIXE) and X-ray Fluorescence (XRF) techniques are widely used in many laboratories for elemental composition analysis. Although they are well-established, a strong effort is put on their upgrade, making them suitable for more and more applications. 
  • 811
  • 11 Jul 2022
Topic Review
Electrification Mechanism of Smart Textile Triboelectric Nanogenerators
Triboelectrification or contact electrification is a universal phenomenon in which two materials contact each other. A triboelectric nanogenerator (TENG) is a new type of energy collection technology first invented by Wang’s team in 2012. By coupling triboelectric charging and electrostatic induction, various forms of irregular, low-frequency, and distributed mechanical energy, which is common in daily life but usually wasted, can be effectively converted into electric energy, including human movement, vibration, wind, mechanical triggering, water waves, and so on.
  • 810
  • 21 Mar 2022
Topic Review
Undernutrition in fragility hip fracture
Geriatric patients with hip fractures often experience overlap in problems related to nutrition, including undernutrition, sarcopenia, and frailty. Such problems are powerful predictors of adverse responses, although few healthcare professionals are aware of them and therefore do not implement effective interventions.
  • 809
  • 30 Sep 2021
Topic Review
Probe for Single-Molecule Fluorescence Microscopy
Probe choice in single-molecule microscopy requires deeper evaluations than those adopted for less sensitive fluorescence microscopy studies. Fluorophore characteristics can alter or hide subtle phenomena observable at the single-molecule level, wasting the potential of the sophisticated instrumentation and algorithms developed for this kind of advanced applications. The three typical groups of fluorophores are fluorescent proteins, organic dyes and quantum dots; here their advantages, drawbacks and use in single-molecule microscopy are discussed. Some requirements are common to all applications, such as high brightness and photostability, specific and efficient labeling, controlled stoichiometry, no perturbation on the system. Other requirements depend on the specific type of single-molecule technique; some of them are here described with their specific requirements for probe choice.
  • 806
  • 13 Feb 2023
Topic Review
Gravitational Two-Body Problem
The gravitational two-body problem concerns the motion of two point particles that interact only with each other, due to gravity. This means that influences from any third body are neglected. For approximate results that is often suitable. It also means that the two bodies stay clear of each other, that is, the two do not collide, and one body does not pass through the other's atmosphere. Even if they do, the theory still holds for the part of the orbit where they don't. Apart from these considerations a spherically symmetric body can be approximated by a point mass. Common examples include the parts of a spaceflight where the spacecraft is not undergoing propulsion and atmospheric effects are negligible, and a single celestial body overwhelmingly dominates the gravitational influence. Other common examples are the orbit of a moon around a planet, and of a planet around a star, and two stars orbiting each other (a binary star).
  • 801
  • 25 Nov 2022
Topic Review
Zeta Ursae Majoris
Mizar is a 2nd magnitude star in the handle of the Big Dipper asterism in the constellation of Ursa Major. It has the Bayer designation ζ Ursae Majoris (Latinised as Zeta Ursae Majoris). It forms a well-known naked eye double star with the fainter star Alcor, and is itself a quadruple star system. The whole system lies about 83 light-years away from the Sun, as measured by the Hipparcos astrometry satellite, and is part of the Ursa Major Moving Group.
  • 800
  • 29 Sep 2022
Topic Review
ADM Formalism
The ADM formalism (named for its authors Richard Arnowitt, Stanley Deser and Charles W. Misner) is a Hamiltonian formulation of general relativity that plays an important role in canonical quantum gravity and numerical relativity. It was first published in 1959. The comprehensive review of the formalism that the authors published in 1962 has been reprinted in the journal General Relativity and Gravitation, while the original papers can be found in the archives of Physical Review.
  • 799
  • 01 Nov 2022
Topic Review
Bya (Unit)
A year is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hours of daylight, and, consequently, vegetation and soil fertility. In temperate and subpolar regions around the planet, four seasons are generally recognized: spring, summer, autumn and winter. In tropical and subtropical regions, several geographical sectors do not present defined seasons; but in the seasonal tropics, the annual wet and dry seasons are recognized and tracked. A calendar year is an approximation of the number of days of the Earth's orbital period, as counted in a given calendar. The Gregorian calendar, or modern calendar, presents its calendar year to be either a common year of 365 days or a leap year of 366 days, as do the Julian calendars; see below. For the Gregorian calendar, the average length of the calendar year (the mean year) across the complete leap cycle of 400 years is 365.2425 days. The ISO standard ISO 80000-3, Annex C, supports the symbol a (for Latin annus) to represent a year of either 365 or 366 days. In English, the abbreviations y and yr are commonly used. In astronomy, the Julian year is a unit of time; it is defined as 365.25 days of exactly 86,400 seconds (SI base unit), totalling exactly 31,557,600 seconds in the Julian astronomical year. The word year is also used for periods loosely associated with, but not identical to, the calendar or astronomical year, such as the seasonal year, the fiscal year, the academic year, etc. Similarly, year can mean the orbital period of any planet; for example, a Martian year and a Venusian year are examples of the time a planet takes to transit one complete orbit. The term can also be used in reference to any long period or cycle, such as the Great Year.
  • 798
  • 01 Dec 2022
  • Page
  • of
  • 130
Video Production Service