Topic Review
Auger Electron Spectroscopy
thumb|A Hanford scientist uses an Auger electron spectrometer to determine the elemental composition of surfaces. Auger electron spectroscopy (AES; pronounced [oʒe] in French) is a common analytical technique used specifically in the study of surfaces and, more generally, in the area of materials science. Underlying the spectroscopic technique is the Auger effect, as it has come to be called, which is based on the analysis of energetic electrons emitted from an excited atom after a series of internal relaxation events. The Auger effect was discovered independently by both Lise Meitner and Pierre Auger in the 1920s. Though the discovery was made by Meitner and initially reported in the journal Zeitschrift für Physik in 1922, Auger is credited with the discovery in most of the scientific community. Until the early 1950s Auger transitions were considered nuisance effects by spectroscopists, not containing much relevant material information, but studied so as to explain anomalies in X-ray spectroscopy data. Since 1953 however, AES has become a practical and straightforward characterization technique for probing chemical and compositional surface environments and has found applications in metallurgy, gas-phase chemistry, and throughout the microelectronics industry.
  • 1.1K
  • 01 Nov 2022
Topic Review
Atomic Units
Atomic units (au or a.u.) form a system of natural units which is especially convenient for atomic physics calculations. There are two different kinds of atomic units, Hartree atomic units and Rydberg atomic units, which differ in the choice of the unit of mass and charge. This article deals with Hartree atomic units, where the numerical values of the following four fundamental physical constants are all unity by definition: In Hartree units, the speed of light is approximately [math]\displaystyle{ 137 }[/math]. Atomic units are often abbreviated "a.u." or "au", not to be confused with the same abbreviation used also for astronomical units, arbitrary units, and absorbance units in different contexts.
  • 6.2K
  • 10 Nov 2022
Topic Review
Atomic Mass Unit
The dalton or unified atomic mass unit (SI symbols: Da or u) is a unit of mass widely used in physics and chemistry. . It is approximately the mass of one nucleon (either a proton or neutron). A mass of 1 Da is also referred to as the atomic mass constant and denoted by mu. Several definitions of this unit have been used, implying slightly different values. The current IUPAC endorsed definition is the unified atomic mass unit, denoted by the symbol u. As of 2019, the International System of Units (SI) lists the dalton, symbol Da, as a unit acceptable for use with the SI unit system and secondarily notes that the dalton (Da) and the unified atomic mass unit (u) are alternative names (and symbols) for the same unit. The symbol Da is more widely used in most fields. It is defined precisely as 1/12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. Despite being an official abbreviation for a related obsolete unit and not widely used in the scientific literature, the abbreviation "amu" now often refers to the modern unit (Da or u) in many preparatory texts. As of June 2019, the value recommended by the Committee on Data for Science and Technology (CODATA) is 1.66053906660(50)×10−27 kg, or approximately 1.66 yoctograms. This unit is commonly used in physics and chemistry to express the mass of atomic-scale objects, such as atoms, molecules, and elementary particles. For example, an atom of helium has a mass of about 4 Da, and a molecule of acetylsalicylic acid (aspirin), C9H8O4, has a mass of about 180.16 Da. In general, the standard atomic weight of an element is the average weight of its atom as it occurs in nature, expressed in daltons. The molecular masses of proteins, nucleic acids, and other large polymers are often expressed with the units kilodalton (kDa), equal to 1000 daltons, megadalton (MDa), one million daltons, etc. Titin, one of the largest known proteins, has an atomic mass of between 3 and 3.7 megadaltons. The DNA of chromosome 1 in the human genome has about 249 million base pairs, each with an average mass of about 650 Da, or 156 GDa total. The mole is a unit of amount of substance, widely used in chemistry and physics, which was originally defined so that the mass of one mole of a substance, measured in grams, would be numerically equal to the average mass of one of its constituent particles, measured in daltons. That is, the molar mass of a chemical compound was meant to be numerically equal to its average molecular mass. For example, the average mass of one molecule of water is about 18.0153 daltons, and one mole of water is about 18.0153 grams. A protein whose molecule has an average mass of 64 kDa would have a molar mass of 64 kg/mol. However, while this equality can be assumed for almost all practical purposes, it is now only approximate, because of the way the mole was redefined on 20 May 2019. The mass in daltons of an atom is numerically very close to the number of nucleons A in its atomic nucleus. It follows that the molar mass of a compound (grams per mole) is also numerically close to the average number of nucleons per molecule. However, the mass of an atomic-scale object is affected by the binding energy of the nucleons in its atomic nuclei, as well as the mass and binding energy of the electrons. Therefore, this equality holds only for the carbon-12 atom in the stated conditions, and will vary for other substances. For example, the mass of one unbound atom of the common hydrogen isotope (hydrogen-1, protium) is 1.007825032241(94) Da, the mass of one free neutron is 1.008664915823(491) Da, and the mass of one hydrogen-2 (deuterium) atom is 2.014101778114(122) Da. In general, the difference (mass defect) is less than 0.1%; except for hydrogen (about 0.8%), helium-3 (0.5%), lithium (0.25%) and beryllium (0.15%). The atomic mass unit should not be confused with unit of mass in the atomic units systems, which is instead the electron rest mass (me).
  • 3.9K
  • 31 Oct 2022
Topic Review
ATOM Program System
The ATOM computer system is designed to study the structure of atoms and the physical processes occurring with their participation. 
  • 654
  • 07 Jun 2022
Topic Review
Atom Chips for Absolute Gravity Sensors
As a powerful tool in scientific research and industrial technologies, the cold atom absolute gravity sensor (CAGS) based on cold atom interferometry has been proven to be the most promising new generation high-precision absolute gravity sensor. However, large size, heavy weight, and high–power consumption are still the main restriction factors of CAGS being applied for practical applications on mobile platforms. Combined with cold atom chips, it is possible to drastically reduce the complexity, weight, and size of CAGS.
  • 354
  • 07 Jun 2023
Topic Review
Atmospheric-pressure Chemical Ionization
Atmospheric pressure chemical ionization (APCI) is an ionization method used in mass spectrometry which utilizes gas-phase ion-molecule reactions at atmospheric pressure (105 Pa), commonly coupled with high-performance liquid chromatography (HPLC). APCI is a soft ionization method similar to chemical ionization where primary ions are produced on a solvent spray. The main usage of APCI is for polar and relatively less polar thermally stable compounds with molecular weight less than 1500 Da. The application of APCI with HPLC has gained a large popularity in trace analysis detection such as steroids, pesticides and also in pharmacology for drug metabolites.
  • 1.7K
  • 01 Dec 2022
Topic Review
Atmospheric Transparency at Candidate Sites for Sub-Millimeter-Wave Telescopes
Radio astronomical observations at millimeter and submillimeter wavelengths are a very important tool for astrophysical research. However, there is a huge area in northeastern Eurasia, including the whole Russian territory, which lacks sufficiently large radio telescopes effectively operating at these wavelengths. 
  • 232
  • 03 Nov 2023
Topic Review
AT2018cow
Coordinates: 16h 16m 00.2242 s, +22° 16′ 04.890 ″ AT2018cow (ATLAS name: ATLAS18qqn; also known as Supernova 2018cow, SN 2018cow, and "The Cow") was a very powerful astronomical explosion, 10 – 100 times brighter than a normal supernova, spatially coincident with galaxy CGCG 137-068, approximately 200 million ly (60 million pc) distant in the Hercules constellation. It was first detected on 16 June 2018 by the ATLAS-HKO telescope, and had generated significant interest among astronomers throughout the world. Later, on 10 July 2018, and after AT2018cow had significantly faded, astronomers, based on followup studies with the Nordic Optical Telescope (NOT), formally described AT2018cow as SN 2018cow, a type Ib supernova, showing an "unprecedented spectrum for a supernova of this class"; although others, mostly at first but also more recently, have referred to it as a type Ic-BL supernova. An explanation to help better understand the unique features of AT2018cow has been presented.
  • 484
  • 19 Oct 2022
Topic Review
Asymmetric Conductivity in Heavy-Fermion Metals
We consider the time reversal T and particle-antiparticle C symmetries that, being most fundamental, can be violated at microscopic level by a weak interaction. The notable example here is from condensed matter, where strongly correlated Fermi systems like HF metals and high-Tc superconductors (or HF compounds) exhibit C and T symmetries violation due to the so-called non-Fermi liquid (NFL) behavior rather than to microscopic inter-particle interaction. When a HF compound is near the topological fermion condensation quantum phase transition (FCQPT), it exhibits the NFL properties, so that the C symmetry breaks down, making the differential tunneling conductivity to be an asymmetric function of the bias voltage V. This asymmetry does not take place in normal metals, where Landau Fermi liquid (LFL) theory holds. Under the application of magnetic field, a HF compound transits to the LFL state, and σ(V) becomes symmetric function of V. These findings are in good agreement with experimental observations. We suggest that the same topological FCQPT defines the baryon asymmetry in the Universe. Thus, the most fundamental features of the nature are defined by its topological and symmetry properties.
  • 2.1K
  • 29 Apr 2021
Topic Review
Astrophysics Data System
The SAO/NASA Astrophysics Data System (ADS) is an online database of over 16 million astronomy and physics papers from both peer reviewed and non-peer reviewed sources. Abstracts are available free online for almost all articles, and full scanned articles are available in Graphics Interchange Format (GIF) and Portable Document Format (PDF) for older articles. It was developed by the National Aeronautics and Space Administration (NASA), and is managed by the Smithsonian Astrophysical Observatory. ADS is a powerful research tool and has had a significant impact on the efficiency of astronomical research since it was launched in 1992. Literature searches that previously would have taken days or weeks can now be carried out in seconds via the ADS search engine, which is custom-built for astronomical needs. Studies have found that the benefit to astronomy of the ADS is equivalent to several hundred million US dollars annually, and the system is estimated to have tripled the readership of astronomical journals. Use of ADS is almost universal among astronomers worldwide, and therefore ADS usage statistics can be used to analyze global trends in astronomical research. These studies have revealed that the amount of research an astronomer carries out is related to the per capita gross domestic product (GDP) of the country in which he/she is based, and that the number of astronomers in a country is proportional to the GDP of that country, so the total amount of research done in a country is proportional to the square of its GDP divided by its population.
  • 666
  • 28 Oct 2022
  • Page
  • of
  • 131
ScholarVision Creations