Topic Review
Soft Templates for Fabricating 3D Nanostructures
Just like rigid templates, there are numerous types of soft templates, including electron resist polymer, photoresist polymer, and various assembled polymers consisting of block polymer, fiber or membrane, polystyrene (PS) sphere, and so forth. These versatile soft templates can be used in the ALA method and have broad prospects for development in powerful fabrication of multiple nanostructures, which possess a lot of advantages, such as simple process, good flexibility, repeatable simplicity of the process, and environmentally friendly easy elimination of the templates, resulting in diversiform 3D nanostructures with numerous device applications.
  • 495
  • 21 Jun 2022
Topic Review
Optical Fiber Biochemical Sensors Based on Graphene
Graphene, a novel form of the hexagonal honeycomb two-dimensional carbon-based structural material with a zero-band gap and ultra-high specific surface area, has unique optoelectronic capabilities, promising a suitable basis for its application in the field of optical fiber sensing. Graphene optical fiber sensing has also been a hotspot in cross-research in biology, materials, medicine, and micro-nano devices in recent years, owing to prospective benefits, such as high sensitivity, small size, and strong anti-electromagnetic interference capability and so on. 
  • 897
  • 20 Jun 2022
Topic Review
Capacity Sizing of Battery–Supercapacitor Hybrid Energy Storage System
A battery–supercapacitor hybrid energy storage system is investigated as a solution to reduce the high-power delivery stress on the battery. An optimally-sized system can further enhance the storage and cost efficiency.
  • 714
  • 17 Jun 2022
Topic Review
Rigid Templates for Fabricating 3D Nanostructures
Rigid templates are defined as opposed to soft templates, and are made of hard materials. Rigid templates have good chemical stability and mechanical rigidity, which are mostly used for the fabrication of nanostructure arrays. A wide choice of rigid templates is available, such as silicon, anodic aluminum oxide, carbon, silica spheres, biological structures, and so forth.
  • 914
  • 14 Jun 2022
Topic Review
Mid-Infrared Supercontinuum Generation in Fluoroindate Glass Fibers
Supercontinuum (SC) generation that leads to the emission of broadband radiation has been extensively studied. In particular, SC sources encompassing the wavelength range of 2–5 μm have attracted considerable interest in the last decade, and a continuous increase in the output power and spectrum width has been observed. To enable broadband and high-power SC generation, suitable nonlinear media combined with appropriate pump sources must be used, maintaining the output as spectrally flat. The emergence of specialty glass fibers, such as fluoroindate fibers, as well as the advances in fiber-based pulsed oscillators and amplifiers, have accelerated the development of high-power SC systems operating in the mid-infrared spectral band.
  • 787
  • 11 Jun 2022
Topic Review
Osgood-Schlatter Disease
Osgood-Schlatter disease is the most common osteochondritis of the lower limb in sport-practicing children and adolescents. Its manifestation usually coincides with the appearance of the secondary ossification center of the tibia and is linked to the practice of sports with an explosive component. 
  • 597
  • 08 Jun 2022
Topic Review Peer Reviewed
Foundations of Quantum Mechanics
Quantum mechanics is a mathematical formalism that models the dynamics of physical objects. It deals with the elementary constituents of matter (atoms, subatomic and elementary particles) and of radiation. It is very accurate in predicting observable physical phenomena, but has many puzzling properties. The foundations of quantum mechanics are a domain in which physics and philosophy concur in attempting to find a fundamental physical theory that explains the puzzling features of quantum mechanics, while remaining consistent with its mathematical formalism. Several theories have been proposed for different interpretations of quantum mechanics. However, there is no consensus regarding any of these theories.
  • 2.1K
  • 07 Jun 2022
Topic Review
Complex Nonlinear Biophysical Brain Dynamics
The human brain is a complex network whose ensemble time evolution is directed by the cumulative interactions of its cellular components, such as neurons and glia cells. Coupled through chemical neurotransmission and receptor activation, these individuals interact with one another to varying degrees by triggering a variety of cellular activity from internal biological reconfigurations to external interactions with other network agents. Consequently, such local dynamic connections mediating the magnitude and direction of influence cells have on one another are highly nonlinear and facilitate, respectively, nonlinear and potentially chaotic multicellular higher-order collaborations. Thus, as a statistical physical system, the nonlinear culmination of local interactions produces complex global emergent network behaviors, enabling the highly dynamical, adaptive, and efficient response of a macroscopic brain network.
  • 815
  • 07 Jun 2022
Topic Review
ATOM Program System
The ATOM computer system is designed to study the structure of atoms and the physical processes occurring with their participation. 
  • 653
  • 07 Jun 2022
Topic Review
Mid-Infrared Femtosecond Laser Based on Difference Frequency Generation
The mid-infrared (MIR) spectral region is known as the “molecular fingerprint region”, and almost every kind of gas molecule shows a unique and strong absorption characteristic within that region. The MIR ultrashort pulsed lasers can be widely used in gas detection, cancer diagnosis, pollutant monitoring, food quality control, and other aspects since they own much broader spectral ranges than ultrafast lasers in the visible and near-infrared region. There have been different techniques for the generation of ultrashort pulses in the MIR region of 2-5 µm. However, for the MIR ultrashort pulses generation at wavelengths longer than 5 µm or even 8 µm, difference frequency generation (DFG) is the primary technique.
  • 1.3K
  • 06 Jun 2022
  • Page
  • of
  • 131
ScholarVision Creations