Topic Review
History of Solar System Formation and Evolution Hypotheses
The history of scientific thought about the Formation and evolution of the Solar System begins with the Copernican Revolution. The first recorded use of the term "Solar System" dates from 1704.
  • 2.7K
  • 22 Nov 2022
Topic Review
Nuclear Symmetry Energy
Nuclear symmetry energy is a measure of the energy cost to make nuclear systems more neutron rich. It depends on the density of the system. Information about the density dependence of nuclear symmetry energy has broad ramifications on the mechanisms of supernova explosions, properties of neutron stars and gravitational waves from their mergers. It is also important for understanding properties of nuclei as well as the dynamics and products of their collisions in laboratory experiments. 
  • 2.7K
  • 03 Aug 2021
Topic Review
Intraretinal Fluid Pattern Characterization
The accumulation of fluids in the retinal layers is one of the main causes of blindness in developed countries. The main strategy for its study and diagnosis is through the use of Optical Coherence Tomography (OCT) images. This allows experts to observe the layers of the retina in a cross-sectional view. Commonly, for the analysis of these accumulations by means of computer diagnostic support systems, precise segmentation strategies are employed.
  • 2.7K
  • 22 Apr 2021
Topic Review
Minkowski Diagram
The Minkowski diagram, also known as a spacetime diagram, was developed in 1908 by Hermann Minkowski and provides an illustration of the properties of space and time in the special theory of relativity. It allows a qualitative understanding of the corresponding phenomena like time dilation and length contraction without mathematical equations. Minkowski diagrams are two-dimensional graphs that depict events as happening in a universe consisting of one space dimension and one time dimension. Unlike a regular distance-time graph, the distance is displayed on the horizontal axis and time on the vertical axis. Additionally, the time and space units of measurement are chosen in such a way that an object moving at the speed of light is depicted as following a 45° angle to the diagram's axes. In this way, each object, like an observer or a vehicle, traces a certain line in the diagram, which is called its world line. Also, each point in the diagram represents a certain position in space and time, and is called an event, regardless of whether anything relevant happens there and then.
  • 2.7K
  • 10 Oct 2022
Topic Review
Plasma
Plasma (from grc πλάσμα (plásma) 'moldable substance') is one of the four fundamental states of matter. It contains a significant portion of charged particles – ions and/or electrons. The presence of these charged particles is what primarily sets plasma apart from the other fundamental states of matter. It is the most abundant form of ordinary matter in the universe, being mostly associated with stars, including the Sun. It extends to the rarefied intracluster medium and possibly to intergalactic regions. Plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field. The presence of charged particles makes plasma electrically conductive, with the dynamics of individual particles and macroscopic plasma motion governed by collective electromagnetic fields and very sensitive to externally applied fields. The response of plasma to electromagnetic fields is used in many modern technological devices, such as plasma televisions or plasma etching. Depending on temperature and density, a certain amount of neutral particles may also be present, in which case plasma is called partially ionized. Neon signs and lightning are examples of partially ionized plasmas. Unlike the phase transitions between the other three states of matter, the transition to plasma is not well defined and is a matter of interpretation and context. Whether a given degree of ionization suffices to call a substance 'plasma' depends on the specific phenomenon being considered.
  • 2.6K
  • 25 Nov 2022
Topic Review
Nuclear Magnetic Resonance Spectroscopy
A description of standard NMR experiments along with some examples.
  • 2.6K
  • 03 Nov 2020
Topic Review
Thermodynamic Dissipation Theory of Life
The Thermodynamic Dissipation Theory of the Origin and Evolution of Life argues that the escence of the origin of life was the microscopic dissipative structuring under UVC light of organic pigments (now known as the fundamental molecules of life - those common to all three domains) and their proliferation over the entire Earth surface, driven by the thermodynamic imperative of dissipating this part of the Archean solar spectrum into heat. With time, dissipative structuring led to ever more complex biosynthetic pathways for creating pigments and their support structures (and processes) which could dissipate not only the UVC region but also other UV regions and the visible wavelengths, until today reaching the "red edge" (at approximately 700 nm). The heat of dissipation of photons absorbed on organic pigments in water then catalyzes a host of coupled secondary dissipative processes such as; the water cycle, ocean and wind currents, hurricanes, etc. pushing the limit for dissipation of the incident light even further towards the infrared. The thermodynamic dissipation theory thus assgins an explicit thermodynamic function to life; the dissipative structuring, proliferation, and evolution of molecular pigments and their complexes from common precursor carbon based molecules under the impressed short wavelength solar photon potential to perform the explicit thermodynamic function of dissipating this light into long wavelength infrared light (heat). In a general sense, the origin of life is no different than the origin of other dissipative structuring processes like hurricanes and the water cycle, except that these latter processes deal with structuring involving hydrogen bonding while life deals with structuring involving covalent bonding. The external photon potential supplied continuously by the environment (our Sun), and its dissipation into heat by the assembly of dissipative structures, are, therefore, both integral components necessary for understanding life. Difficult problems related to the origin of life, such as enzyme-less replication of RNA and DNA, homochirality of the fundamental molecules, and the origin of amino acid -codon assignments (information encoding in RNA and DNA), also find simple explanations within this same dissipative thermodynamic framework once the existence of a relation between primordial RNA and DNA replication and UV-C photon dissipation is established.
  • 2.6K
  • 04 Feb 2021
Topic Review
Compositional Engineering of Perovskites
We give a systematic overview of compositional engineering by distinguishing the different defect-reducing mechanisms. Doping effects are divided into influences on: (1) crystallization; (2) lattice properties. Incorporation of dopant influences the lattice properties by: (a) lattice strain relaxation; (b) chemical bonding enhancement; (c) band gap tuning. The intrinsic lattice strain in undoped perovskite was shown to induce vacancy formation. The incorporation of smaller ions, such as Cl, F and Cd, increases the energy for vacancy formation. Zn doping is reported to induce strain relaxation but also to enhance the chemical bonding. The combination of computational studies using (DFT) calculations quantifying and qualifying the defect-reducing propensities of different dopants with experimental studies is essential for a deeper understanding and unraveling insights, such as the dynamics of iodine vacancies and the photochemistry of the iodine interstitials, and can eventually lead to a more rational approach in the search for optimal photovoltaic materials.
  • 2.6K
  • 28 Oct 2020
Topic Review
Universe & Anharmonic Oscillator & Singularity Avoidance Higgs
The functioning of our universe and atomic is based on the oscillation of the particle itself and asymmetrically between matter and antimatter. This mechanism is a classical an-harmonic oscillator and uses a linear oscillation of the particle, where the energy can be represented by the graph of a potential well. In this potential well the alternation of energies ocurs between the kinetic energy and potential energy. This an-harmonic oscillation of the particle thus occurs through a gravitational oscillator (see "hole through the Earth simple harmonic motion"), followed by a singularity avoidance. Indeed the important kinetics of the particle leads to a singularity avoidance to pass over the supermassive black hole to plot the Higgs field/potential. The alternation of the particle at very high frequency generates by the principle of mass-energy equivalence in vacuum (E=mc²) a mass flux expressed by the quantum fluctuation determined by a scalar energy density. This scalar density represents for example the dark matter and the residues of the latter in the quantum vacuum. However a vectorial interpretation of the particle is possible as soon as its oscillation through the oscillator is really minimized before becoming a mass-energy equivalence flux. That represent the elements related to Einstein's Stress Energy Tensor. Here is the one of interpretation of quantum mechanics in relation to relativistic physics. 
  • 2.6K
  • 23 Aug 2022
Topic Review
Bessel Beam
Diffraction is a phenomenon related to the wave nature of light and arises when a propagating wave comes across an obstacle. Consequently, the wave can be transformed in amplitude or phase and diffraction occurs. Those parts of the wavefront avoiding an obstacle form a diffraction pattern after interfering with each other. In this review paper, we have discussed the topic of non-diffractive beams, explicitly Bessel beams. Such beams provide some resistance to diffraction and hence are hypothetically a phenomenal alternate to Gaussian beams in several circumstances. Several outstanding applications are coined to Bessel beams and have been employed in commercial applications. We have discussed several hot applications based on these magnificent beams such as optical trapping, material processing, free-space long-distance self-healing beams, optical coherence tomography, superresolution, sharp focusing, polarization transformation, increased depth of focus, birefringence detection based on astigmatic transformed BB and encryption in optical communication. According to our knowledge, each topic presented in this entry is justifiably explained.
  • 2.6K
  • 09 Dec 2020
  • Page
  • of
  • 130
Video Production Service