Topic Review
RESOLFT
RESOLFT, an acronym for REversible Saturable OpticaL Fluorescence Transitions, denotes a group of optical fluorescence microscopy techniques with very high resolution. Using standard far field visible light optics a resolution far below the diffraction limit down to molecular scales can be obtained. With conventional microscopy techniques, it is not possible to distinguish features that are located at distances less than about half the wavelength used (i.e. about 200 nm for visible light). This diffraction limit is based on the wave nature of light. In conventional microscopes the limit is determined by the used wavelength and the numerical aperture of the optical system. The RESOLFT concept surmounts this limit by temporarily switching the molecules to a state in which they cannot send a (fluorescence-) signal upon illumination. This concept is different from for example electron microscopy where instead the used wavelength is much smaller.
  • 468
  • 25 Nov 2022
Topic Review
The Advanced Applications of 2D Materials in SERS
Surface-enhanced Raman scattering (SERS) as a label-free, non-contact, highly sensitive, and powerful technique has been widely applied in determining bio- and chemical molecules with fingerprint recognitions. 2-dimensional (2D) materials with layered structures, tunable optical properties, good chemical/physical stabilities, and strong charge–transfer interaction with molecules have attracted researchers’ interests. Two-D materials with a large and flat surface area, as well as good biocompatibility have been considered promising candidates in SERS and widely applied in chemical and bio-applications. It is well known that the noble metallic nanostructures with localized surface plasmon effects dominate the SERS performance. The combination of noble metallic nanostructure with 2D materials is becoming a new and attractive research domain. The SERS substrates combined with 2D materials, such as 2D graphene/metallic NPs, 2D materials@metallic core-shell structures, and metallic structure/2D materials/metallic structure are intensely studied.
  • 510
  • 25 Nov 2022
Topic Review
Centaur (Minor Planet)
Centaurs are small solar system bodies with a semi-major axis between those of the outer planets. They generally have unstable orbits because they cross or have crossed the orbits of one or more of the giant planets; almost all their orbits have dynamic lifetimes of only a few million years, but there is one centaur, (514107) 2015 BZ509, which may be in a stable (though retrograde) orbit. Centaurs typically behave with characteristics of both asteroids and comets. They are named after the mythological centaurs that were a mixture of horse and human. It has been estimated that there are around 44,000 centaurs in the Solar System with diameters larger than 1 kilometer. The first centaur to be discovered, under the definition of the Jet Propulsion Laboratory and the one used here, was 944 Hidalgo in 1920. However, they were not recognized as a distinct population until the discovery of 2060 Chiron in 1977. The largest confirmed centaur is 10199 Chariklo, which at 260 kilometers in diameter is as big as a mid-sized main-belt asteroid, and is known to have a system of rings. It was discovered in 1997. However, the lost centaur 1995 SN55 may be somewhat larger. No centaur has been photographed up close, although there is evidence that Saturn's moon Phoebe, imaged by the Cassini probe in 2004, may be a captured centaur that originated in the Kuiper belt. In addition, the Hubble Space Telescope has gleaned some information about the surface features of 8405 Asbolus. (As of 2008), three centaurs have been found to display comet-like comas: 2060 Chiron, 60558 Echeclus, and 166P/NEAT. Chiron and Echeclus are therefore classified as both asteroids and comets. Other centaurs, such as 52872 Okyrhoe, are suspected of having shown comas. Any centaur that is perturbed close enough to the Sun is expected to become a comet.
  • 856
  • 25 Nov 2022
Topic Review
CPU Power Dissipation
Central processing unit power dissipation or CPU power dissipation is the process in which central processing units (CPUs) consume electrical energy, and dissipate this energy in the form of heat due to the resistance in the electronic circuits.
  • 1.9K
  • 25 Nov 2022
Topic Review
Lattice Gauge Theory
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum electrodynamics, quantum chromodynamics (QCD) and particle physics' Standard Model. Non-perturbative gauge theory calculations in continuous spacetime formally involve evaluating an infinite-dimensional path integral, which is computationally intractable. By working on a discrete spacetime, the path integral becomes finite-dimensional, and can be evaluated by stochastic simulation techniques such as the Monte Carlo method. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum gauge theory is recovered.
  • 339
  • 25 Nov 2022
Topic Review
Geothrix Fermentans
Geothrix fermentans is a rod-shaped, anaerobic bacterium. It is about 0.1 µm in diameter and ranges from 2-3 µm in length. Cell arrangement occurs singly and in chains. Geothrix fermentans can normally be found in aquatic sediments such as in aquifers. As an anaerobic chemoorganotroph, this organism is best known for its ability to use electron acceptors Fe(III), as well as other high potential metals. It also uses a wide range of substrates as electron donors. Research on metal reduction by G. fermentans has contributed to understanding more about the geochemical cycling of metals in the environment.
  • 365
  • 25 Nov 2022
Topic Review
Gravitational Two-Body Problem
The gravitational two-body problem concerns the motion of two point particles that interact only with each other, due to gravity. This means that influences from any third body are neglected. For approximate results that is often suitable. It also means that the two bodies stay clear of each other, that is, the two do not collide, and one body does not pass through the other's atmosphere. Even if they do, the theory still holds for the part of the orbit where they don't. Apart from these considerations a spherically symmetric body can be approximated by a point mass. Common examples include the parts of a spaceflight where the spacecraft is not undergoing propulsion and atmospheric effects are negligible, and a single celestial body overwhelmingly dominates the gravitational influence. Other common examples are the orbit of a moon around a planet, and of a planet around a star, and two stars orbiting each other (a binary star).
  • 772
  • 25 Nov 2022
Topic Review
Degrees of Freedom (Physics and Chemistry)
In physics and chemistry, a degree of freedom is an independent physical parameter in the formal description of the state of a physical system. The set of all states of a system is known as the system's phase space, and the degrees of freedom of the system are the dimensions of the phase space. The location of a particle in three-dimensional space requires three position coordinates. Similarly, the direction and speed at which a particle moves can be described in terms of three velocity components, each in reference to the three dimensions of space. If the time evolution of the system is deterministic (where the state at one instant uniquely determines its past and future position and velocity as a function of time) such a system has six degrees of freedom. If the motion of the particle is constrained to a lower number of dimensions – for example, the particle must move along a wire or on a fixed surface – then the system has fewer than six degrees of freedom. On the other hand, a system with an extended object that can rotate or vibrate can have more than six degrees of freedom. In classical mechanics, the state of a point particle at any given time is often described with position and velocity coordinates in the Lagrangian formalism, or with position and momentum coordinates in the Hamiltonian formalism. In statistical mechanics, a degree of freedom is a single scalar number describing the microstate of a system. The specification of all microstates of a system is a point in the system's phase space. In the 3D ideal chain model in chemistry, two angles are necessary to describe the orientation of each monomer. It is often useful to specify quadratic degrees of freedom. These are degrees of freedom that contribute in a quadratic function to the energy of the system. Depending on what one is counting, there are several different ways that degrees of freedom can be defined, each with a different value.
  • 3.4K
  • 25 Nov 2022
Topic Review
Configuration Space
In classical mechanics, the parameters that define the configuration of a system are called generalized coordinates, and the space defined by these coordinates is called the configuration space of the physical system. It is often the case that these parameters satisfy mathematical constraints, such that the set of actual configurations of the system is a manifold in the space of generalized coordinates. This manifold is called the configuration manifold of the system. Notice that this is a notion of "unrestricted" configuration space, i.e. in which different point particles may occupy the same position. In mathematics, in particular in topology, a notion of "restricted" configuration space is mostly used, in which the diagonals, representing "colliding" particles, are removed.
  • 906
  • 25 Nov 2022
Topic Review
Position and Momentum Space
In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general could be any finite number of dimensions. Position space (also real space or coordinate space) is the set of all position vectors r in space, and has dimensions of length. A position vector defines a point in space. If the position vector of a point particle varies with time it will trace out a path, the trajectory of a particle. Momentum space is the set of all momentum vectors p a physical system can have. The momentum vector of a particle corresponds to its motion, with units of [mass][length][time]−1. Mathematically, the duality between position and momentum is an example of Pontryagin duality. In particular, if a function is given in position space, f(r), then its Fourier transform obtains the function in momentum space, φ(p). Conversely, the inverse Fourier transform of a momentum space function is a position space function. These quantities and ideas transcend all of classical and quantum physics, and a physical system can be described using either the positions of the constituent particles, or their momenta, both formulations equivalently provide the same information about the system in consideration. Another quantity is useful to define in the context of waves. The wave vector k (or simply "k-vector") has dimensions of reciprocal length, making it an analogue of angular frequency ω which has dimensions of reciprocal time. The set of all wave vectors is k-space. Usually r is more intuitive and simpler than k, though the converse can also be true, such as in solid-state physics. Quantum mechanics provides two fundamental examples of the duality between position and momentum, the Heisenberg uncertainty principle ΔxΔp ≥ ħ/2 stating that position and momentum cannot be simultaneously known to arbitrary precision, and the de Broglie relation p = ħk which states the momentum and wavevector of a free particle are proportional to each other. In this context, when it is unambiguous, the terms "momentum" and "wavevector" are used interchangeably. However, the de Broglie relation is not true in a crystal.
  • 1.8K
  • 24 Nov 2022
  • Page
  • of
  • 118
Video Production Service