Topic Review
Video Feedback
Video feedback is the process that starts and continues when a video camera is pointed at its own playback video monitor. The loop delay from camera to display back to camera is at least one video frame time, due to the input and output scanning processes; it can be more if there is more processing in the loop.
  • 1.1K
  • 02 Dec 2022
Topic Review
Strangeness Production
Strangeness production is a signature and a diagnostic tool of quark–gluon plasma (or QGP) formation and properties. Unlike up and down quarks, from which everyday matter is made, strange quarks are formed in pair-production processes in collisions between constituents of the plasma. The dominant mechanism of production involves gluons only present when matter has become a quark–gluon plasma. When quark–gluon plasma disassembles into hadrons in a breakup process, the high availability of strange antiquarks helps to produce antimatter containing multiple strange quarks, which is otherwise rarely made. Similar considerations are at present made for the heavier charm flavor, which is made at the beginning of the collision process in the first interactions and is only abundant in the high-energy environments of CERN's Large Hadron Collider.
  • 832
  • 02 Dec 2022
Topic Review
Transit
File:Moon transit of sun large.ogv In astronomy, a transit (or astronomical transit) is a phenomenon when a celestial body passes directly between a larger body and the observer. As viewed from a particular vantage point, the transiting body appears to move across the face of the larger body, covering a small portion of it. The word "transit" refers to cases where the nearer object appears smaller than the more distant object. Cases where the nearer object appears larger and completely hides the more distant object are known as occultations. However, the probability of seeing a transiting planet is low because it is dependent on the alignment of the three objects in a nearly perfectly straight line. Many parameters of a planet and its parent star can be determined based on the transit.
  • 1.2K
  • 02 Dec 2022
Topic Review
Strain Rate Tensor
In continuum mechanics, the strain rate tensor is a physical quantity that describes the rate of change of the deformation of a material in the neighborhood of a certain point, at a certain moment of time. It can be defined as the derivative of the strain tensor with respect to time, or as the symmetric component of the gradient (derivative with respect to position) of the flow velocity. The strain rate tensor is a purely kinematic concept that describes the macroscopic motion of the material. Therefore, it does not depend on the nature of the material, or on the forces and stresses that may be acting on it; and it applies to any continuous medium, whether solid, liquid or gas. On the other hand, for any fluid except superfluids, any gradual change in its deformation (i.e. a non-zero strain rate tensor) gives rise to viscous forces in its interior, due to friction between adjacent fluid elements, that tend to oppose that change. At any point in the fluid, these stresses can be described by a viscous stress tensor that is, almost always, completely determined by the strain rate tensor and by certain intrinsic properties of the fluid at that point. Viscous stress also occur in solids, in addition to the elastic stress observed in static deformation; when it is too large to be ignored, the material is said to be viscoelastic.
  • 3.2K
  • 02 Dec 2022
Topic Review
Precursor
Precursors are characteristic wave patterns caused by dispersion of an impulse's frequency components as it propagates through a medium. Classically, precursors precede the main signal, although in certain situations they may also follow it. Precursor phenomena exist for all types of waves, as their appearance is only predicated on the prominence of dispersion effects in a given mode of wave propagation. This non-specificity has been confirmed by the observation of precursor patterns in different types of electromagnetic radiation (microwaves, visible light, and terahertz radiation) as well as in fluid surface waves and seismic waves.
  • 730
  • 02 Dec 2022
Topic Review
Solar System Model
Solar System models, especially mechanical models, called orreries, that illustrate the relative positions and motions of the planets and moons in the Solar System have been built for centuries. While they often showed relative sizes, these models were usually not built to scale. The enormous ratio of interplanetary distances to planetary diameters makes constructing a scale model of the Solar System a challenging task. As one example of the difficulty, the distance between the Earth and the Sun is almost 12,000 times the diameter of the Earth. If the smaller planets are to be easily visible to the naked eye, large outdoor spaces are generally necessary, as is some means for highlighting objects that might otherwise not be noticed from a distance. The Boston Museum of Science has placed bronze models of the planets in major public buildings, all on similar stands with interpretive labels. For example, the model of Jupiter is located in the cavernous South Station waiting area. The properly-scaled, basket-ball-sized model is 1.3 miles (2.14 km) from the model Sun which is located at the museum, graphically illustrating the immense empty space in the Solar System. The objects in such large models do not move. Traditional orreries often did move, and some used clockworks to display the relative speeds of objects accurately. These can be thought of as being correctly scaled in time, instead of distance.
  • 524
  • 01 Dec 2022
Topic Review
Bya (Unit)
A year is the orbital period of a planetary body, for example, the Earth, moving in its orbit around the Sun. Due to the Earth's axial tilt, the course of a year sees the passing of the seasons, marked by change in weather, the hours of daylight, and, consequently, vegetation and soil fertility. In temperate and subpolar regions around the planet, four seasons are generally recognized: spring, summer, autumn and winter. In tropical and subtropical regions, several geographical sectors do not present defined seasons; but in the seasonal tropics, the annual wet and dry seasons are recognized and tracked. A calendar year is an approximation of the number of days of the Earth's orbital period, as counted in a given calendar. The Gregorian calendar, or modern calendar, presents its calendar year to be either a common year of 365 days or a leap year of 366 days, as do the Julian calendars; see below. For the Gregorian calendar, the average length of the calendar year (the mean year) across the complete leap cycle of 400 years is 365.2425 days. The ISO standard ISO 80000-3, Annex C, supports the symbol a (for Latin annus) to represent a year of either 365 or 366 days. In English, the abbreviations y and yr are commonly used. In astronomy, the Julian year is a unit of time; it is defined as 365.25 days of exactly 86,400 seconds (SI base unit), totalling exactly 31,557,600 seconds in the Julian astronomical year. The word year is also used for periods loosely associated with, but not identical to, the calendar or astronomical year, such as the seasonal year, the fiscal year, the academic year, etc. Similarly, year can mean the orbital period of any planet; for example, a Martian year and a Venusian year are examples of the time a planet takes to transit one complete orbit. The term can also be used in reference to any long period or cycle, such as the Great Year.
  • 762
  • 01 Dec 2022
Topic Review
Transactinide Element
In chemistry, transactinide elements (also, transactinides, or super-heavy elements) are the chemical elements with atomic numbers from 104 to 120. Their atomic numbers are immediately greater than those of the actinides, the heaviest of which is lawrencium (atomic number 103). Glenn T. Seaborg first proposed the actinide concept, which led to the acceptance of the actinide series. He also proposed the transactinide series ranging from element 104 to 121 and the superactinide series approximately spanning elements 122 to 153. The transactinide seaborgium was named in his honor. By definition, transactinide elements are also transuranic elements, i.e. have an atomic number greater than uranium (92). The transactinide elements all have electrons in the 6d subshell in their ground state. Except for rutherfordium and dubnium, even the longest-lasting isotopes of transactinide elements have extremely short half-lives, measured in seconds, or smaller units. The element naming controversy involved the first five or six transactinide elements. These elements thus used systematic names for many years after their discovery had been confirmed. (Usually the systematic names are replaced with permanent names proposed by the discoverers relatively shortly after a discovery has been confirmed.) Transactinides are radioactive and have only been obtained synthetically in laboratories. None of these elements has ever been collected in a macroscopic sample. Transactinide elements are all named after physicists and chemists or important locations involved in the synthesis of the elements. IUPAC defines an element to exist if its lifetime is longer than 10−14 seconds, which is the time it takes for the nucleus to form an electron cloud.
  • 2.9K
  • 01 Dec 2022
Topic Review
Mapping Imaging Spectrometer for Europa
The Mapping Imaging Spectrometer for Europa (MISE) is an imaging near infrared spectrometer on board the Europa Clipper mission to Jupiter's moon Europa. MISE will examine Europa's surface composition and relate it to the habitability of its internal water ocean.
  • 251
  • 01 Dec 2022
Topic Review
Large Extra Dimension
In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. (Why is the force of gravity so weak compared to the electromagnetic force and the other fundamental forces?) The model tries to explain this problem by postulating that our universe, with its four dimensions (three spatial ones plus time), exists on a so called membrane floating in 11-dimensional space. It is then suggested that the other forces of nature (the electromagnetic force, strong interaction, and weak interaction) operate within this membrane and its four dimensions, while gravity can operate across all 11 dimensions. This would explain why gravity is very weak compared to the other fundamental forces. This is a radical theory given that the other 7 dimensions, which we do not observe, previously have been assumed to be very small (about a planck-length), while this theory asserts that they might be very large. The model was proposed by Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali in 1998. Attempts to test the theory are executed by smashing together two protons in the Large Hadron Collider so that they disperse and release elementary particles. If a postulated graviton appeared after a collision, for such a particle to disappear, and its disappearance be observed, that would suggest that the graviton had escaped into other dimensions beyond our universe's observable four. No experiments from the Large Hadron Collider have been decisive thus far. However, the operation range of the LHC (13 TeV collision energy) covers only a small part of the predicted range in which evidence for LED would be recorded (a few TeV to 1016 TeV). This suggests that the theory might be more thoroughly tested with advanced technology.
  • 399
  • 01 Dec 2022
  • Page
  • of
  • 118
Video Production Service