Topic Review
Jiles–Atherton Model
The Jiles–Atherton model of magnetic hysteresis was introduced in 1984 by David Jiles and D. L. Atherton. This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. Jiles–Atherton model enables calculation of minor and major hysteresis loops. The original Jiles–Atherton model is suitable only for isotropic materials. However, an extension of this model presented by Ramesh et al. and corrected by Szewczyk enables the modeling of anisotropic magnetic materials.
  • 1.4K
  • 02 Nov 2022
Topic Review
Meanings of Minor Planet Names: 1–1000
As minor planet discoveries are confirmed, they are given a permanent number by the IAU's Minor Planet Center (MPC), and the discoverers can then submit names for them, following the IAU's naming conventions. The list below concerns those minor planets in the specified number-range that have received names, and explains the meanings of those names. Official naming citations of newly named small Solar System bodies are published in MPC's Minor Planet Circulars several times a year. Recent citations can also be found on the JPL Small-Body Database (SBDB). Until his death in 2016, German astronomer Lutz D. Schmadel compiled these citations into the Dictionary of Minor Planet Names (DMP) and regularly updated the collection. Based on Paul Herget's The Names of the Minor Planets, Schmadel also researched the unclear origin of numerous asteroids, most of which had been named prior to World War II.  This article incorporates public domain material from the United States Government document "SBDB". New namings may only be added after official publication as the preannouncement of names is condemned by the Committee on Small Body Nomenclature.
  • 1.4K
  • 25 Oct 2022
Topic Review
Virus Nanotechnology
Virus nanotechnology is the use of viruses as a source of nanoparticles for biomedical purposes. Viruses are made up of a genome and a capsid; and some viruses are enveloped. Most virus capsids measure between 20-500 nm in diameter. Because of their nanometer size dimensions, viruses have been considered as naturally occurring nanoparticles. Virus nanoparticles have been subject to the nanoscience and nanoengineering disciplines. Viruses can be regarded as prefabricated nanoparticles. Many different viruses have been studied for various applications in nanotechnology: for example, mammalian viruses are being developed as vectors for gene delivery, and bacteriophages and plant viruses have been used in drug delivery and imaging applications as well as in vaccines and immunotherapy intervention.
  • 1.4K
  • 15 Nov 2022
Topic Review
Wearable Body Sensors
The use of wearable body sensors for health monitoring is a quickly growing field with the potential of offering a reliable means for clinical and remote health management. This includes both real-time monitoring and health trend monitoring with the aim to detect/predict health deterioration and also to act as a prevention tool. The aim of this systematic review was to provide a qualitative synthesis of studies using wearable body sensors for health monitoring. The synthesis and analysis have pointed out a number of shortcomings in prior research. Major shortcomings are demonstrated by the majority of the studies adopting an observational research design, too small sample sizes, poorly presented, and/or non-representative participant demographics (i.e., age, gender, patient/healthy). These aspects need to be considered in future research work.
  • 1.4K
  • 29 Oct 2020
Topic Review
Standard and Alternative Cosmology
The Standard and The Alternative Cosmological Models, Distances Calculation to Galaxies without Hubble Constant For the alternative cosmological models considered in the extended version of this entry, the distances  are calculated for galaxies without using the Hubble constant. This process is mentioned in the second narrative, and described in detail in the third narration. According to the third narrative, as the density of the relativistic mass of the universe decreases while the universe expands, new matter is created by a phase transition process which results in a continuously constant ordinary density of matter. While the universe develops on the basis of this postulate of the emergence of new matter, it is "assumed that matter arises as a result of such a phase transition of dark energy into both new dark and visible matter. It is somewhat irrelevant how we describe dark energy, calling it aether, or vice versa, the changing of aether into dark energy. It should be clear to everyone that this renaming does not change the essence of this phase transition phenomena. It should be noted that, unlike all well‐known geometric models of the Euclidean space of our existence, this phase transition of dark energy into matter would accordingly be a stereographic projection of a three‐dimensional surface on to a four‐dimensional globe.
  • 1.4K
  • 29 Oct 2020
Topic Review
Gauss' Method
In orbital mechanics (subfield of celestial mechanics), Gauss's method is used for preliminary orbit determination from at least three observations (more observations increases the accuracy of the determined orbit) of the orbiting body of interest at three different times. The required information are the times of observations, the position vectors of the observation points (in Equatorial Coordinate System), the direction cosine vector of the orbiting body from the observation points (from Topocentric Equatorial Coordinate System) and general physical data. Carl Friedrich Gauss developed important mathematical techniques (summed up in Gauss's methods) which were specifically used to determine the orbit of Ceres. The method shown following is the orbit determination of an orbiting body about the focal body where the observations were taken from, whereas the method for determining Ceres' orbit requires a bit more effort because the observations were taken from Earth while Ceres orbits the Sun.
  • 1.4K
  • 10 Nov 2022
Topic Review
Lunar Outpost (NASA)
A lunar outpost is a concept of a permanent or semi-permanent presence of humans on the Moon, a moonbase, by the United States space administration NASA. NASA requested an increase in the 2020 budget of $1.6 billion, in order to make another crewed mission to the Moon by 2025 (originally 2024), followed by a sustained presence on the Moon by 2028.
  • 1.4K
  • 23 Nov 2022
Topic Review
Plasmonic Biosensors
Biosensors have globally been considered as biomedical diagnostic tools required in abundant areas including the development of diseases, detection of viruses, diagnosing ecological pollution, food monitoring, and a wide range of other diagnostic and therapeutic biomedical research. Recently, the broadly emerging and promising technique of plasmonic resonance has proven to provide label-free and highly sensitive real-time analysis when used in biosensing applications.
  • 1.4K
  • 26 Apr 2022
Topic Review
Theranostic Radiopharmaceuticals
Theranostic Radiopharmaceuticals (Radiotheranostics) is a term in the medical field to define the combination of therapeutic and diagnostic techniques by a suitable radiopharmaceutical agent. Radionuclides are isotopes that emit radiation or have excess nuclear energy, making them chemically unstable and tend to change into another atom. Various types of radiation can be emitted by radionuclides e.g. alpha particles, beta particles, and gamma energy. In radiotheranostics, a pharmaceutical agent (drug) is needed to be a carrier molecule that introduces the radionuclide to its target. Radionuclides are then used as a source of radiation in radiotheranostics that are responsible for diagnosing or treating various diseases.
  • 1.4K
  • 24 May 2022
Topic Review
Aggregation-Induced Emission Active Materials
The emergence and development of aggregation induced emission (AIE) have attracted worldwide attention due to its unique photophysical phenomenon and for removing the obstacle of aggregation-caused quenching (ACQ) which is the most detrimental process thereby making AIE an important and promising aspect in various fields of fluorescent material, sensing, bioimaging, optoelectronics, drug delivery system, and theranostics. hexaphenylsilole (HPS) is the common example of the AIE active molecule which exhibits enhancement in fluorescence in an aggregate state. The motions involved, such as restriction of intramolecular motion along with rotation and vibration mechanisms in the AIE active phenomenon, are well explained and accepted. The AIE luminogens have high photostability, large stoke shift, a photobleaching resistance property, and show high sensing reproducibility. This characteristic makes luminogens a promising candidate for sensing application
  • 1.4K
  • 19 Apr 2022
  • Page
  • of
  • 118
Video Production Service