Topic Review
Aeroelasticity Methods in Turbomachinery
Aeroelastic phenomena in turbomachinery are one of the most challenging problems to model using computational fluid dynamics (CFD) due to their inherent nonlinear nature, the difficulties in simulating fluid–structure interactions and the considerable computational requirements. Nonetheless, accurate modelling of self-sustained flow-induced vibrations, known as flutter, has proved to be crucial in assessing stability boundaries and extending the operative life of turbomachinery. Flutter avoidance and control is becoming more relevant in compressors and fans due to a well-established trend towards lightweight and thinner designs that enhance aerodynamic efficiency.
  • 1.5K
  • 09 Sep 2021
Topic Review
Planet-Hosting Stars
Planet-hosting stars are stars which host planets, therefore forming planetary systems. This article describes the correlations between stars' characteristics and the characteristics of the planets that orbit them, and other connections between stars and their planets.
  • 1.5K
  • 23 Nov 2022
Topic Review
Scale Relativity
Scale relativity is a geometrical and fractal space-time physical theory. Relativity theories (special relativity and general relativity) are based on the notion that position, orientation, movement and acceleration cannot be defined in an absolute way, but only relative to a system of reference. The scale relativity theory proposes to extend the concept of relativity to physical scales (time, length, energy, or momentum scales), by introducing an explicit "state of scale" in coordinate systems. This extension of the relativity principle using fractal geometries to study scale transformations was originally introduced by Laurent Nottale, based on the idea of a fractal space-time theory first introduced by Garnet Ord, and by Nottale and Jean Schneider. The construction of the theory is similar to previous relativity theories, with three different levels: Galilean, special and general. The development of a full general scale relativity is not finished yet.
  • 1.5K
  • 14 Oct 2022
Topic Review
Stokes Boundary Layer
In fluid dynamics, the Stokes boundary layer, or oscillatory boundary layer, refers to the boundary layer close to a solid wall in oscillatory flow of a viscous fluid. Or, it refers to the similar case of an oscillating plate in a viscous fluid at rest, with the oscillation direction(s) parallel to the plate. For the case of laminar flow at low Reynolds numbers over a smooth solid wall, George Gabriel Stokes – after whom this boundary layer is called – derived an analytic solution, one of the few exact solutions for the Navier–Stokes equations. In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow. The thickness of the oscillatory boundary layer is called the Stokes boundary-layer thickness.
  • 1.5K
  • 28 Oct 2022
Topic Review
Sunflower Seeds, Oil and Oilcake
Ample amounts of by-products are generated from the oil industry. Among them, sunflower oilcakes have the potential to be used for human consumption, thus achieving the concept of sustainability and circular economy. Sunflower oil contains principally oleic (19.81%) and linoleic (64.35%) acids, which cannot be synthetized by humans and need to be assimilated through a diet. Sunflower seeds are very nutritive (33.85% proteins and 65.42% lipids and 18 mineral elements). Due to the rich content of lipids, they are principally used as a source of vegetable oil. Compared to seeds, sunflower oilcakes are richer in fibers (31.88% and 12.64% for samples in form of pellets and cake, respectively) and proteins (20.15% and 21.60%), with a balanced amino acids profile. The remaining oil (15.77% and 14.16%) is abundant in unsaturated fatty acids (95.59% and 92.12%). The comparison between the three products showed the presence of valuable components that makes them suitable for healthy diets with an adequate intake of nutrients and other bioactive compounds with benefic effects.
  • 1.5K
  • 07 Dec 2021
Topic Review
LIGO
The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. Two large observatories were built in the United States with the aim of detecting gravitational waves by laser interferometry. These can detect a change in the 4 km mirror spacing of less than a ten-thousandth the charge diameter of a proton, equivalent to measuring the distance from Earth to Proxima Centauri (4.0208x1013km) with an accuracy smaller than the width of a human hair. The initial LIGO observatories were funded by the National Science Foundation (NSF) and were conceived, built, and are operated by Caltech and MIT. They collected data from 2002 to 2010 but no gravitational waves were detected. The Advanced LIGO Project to enhance the original LIGO detectors began in 2008 and continues to be supported by the NSF, with important contributions from the UK Science and Technology Facilities Council, the Max Planck Society of Germany, and the Australian Research Council. The improved detectors began operation in 2015. The detection of gravitational waves was reported in 2016 by the LIGO Scientific Collaboration (LSC) and the Virgo Collaboration with the international participation of scientists from several universities and research institutions. Scientists involved in the project and the analysis of the data for gravitational-wave astronomy are organized by the LSC, which includes more than 1000 scientists worldwide, as well as 440,000 active Einstein@Home users (As of December 2016). LIGO is the largest and most ambitious project ever funded by the NSF. In 2017, the Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne and Barry C. Barish "for decisive contributions to the LIGO detector and the observation of gravitational waves." "The Nobel Prize in Physics 2017". Nobel Foundation. https://www.nobelprize.org/nobel_prizes/physics/laureates/2017/press.html.  As of March 2018, LIGO has made six detections of gravitational waves, of which the first five were colliding black-hole pairs. The sixth detected event, on August 17, 2017, was the first detection of a collision of two neutron stars, which simultaneously produced optical signals detectable by conventional telescopes.
  • 1.4K
  • 25 Oct 2022
Topic Review
GaN-Based LEDs: Modeling and Simulation
Light-emitting diodes (LEDs) based on Gallium Nitride (GaN) have been revolutionizing various applications in lighting, displays, biotechnology, and other fields. Many theoretical models have been developed for GaN-LED simulation, analysis, and design optimization, including carrier transport models, quantum well recombination models, and light extraction models. The overview below is a strongly abbreviated version of Ref. [1].
  • 1.4K
  • 17 Dec 2020
Topic Review
Optical Coherence Angiography Imaging in Ocular Vascular Diseases
Optical coherence tomography angiography (OCTA) provides us with a non-invasive and efficient means of imaging anterior and posterior segment vasculature in the eye. OCTA has been shown to be effective in imaging diseases such as diabetic retinopathy, retinal vein occlusions, retinal artery occlusions, ocular ischemic syndrome and neovascularization of the iris. It is especially useful with depth-resolved imaging of the superficial, intermediate, and deep capillary plexi in the retina, which enables us to study and closely monitor disease progression and response to treatment. With further advances in technology, OCTA has the potential to become a more widely used tool in the clinical setting and may even supersede ocular angiography in some areas.
  • 1.4K
  • 29 Oct 2020
Topic Review
FFAG Accelerator
A Fixed-Field Alternating Gradient accelerator (FFAG) is a circular particle accelerator concept on which development was started in the early 50s, and that can be characterized by its time-independent magnetic fields (fixed-field, like in a cyclotron) and the use of strong focusing (alternating gradient, like in a synchrotron). Thus, FFAG accelerators combine the cyclotron's advantage of continuous, unpulsed operation, with the synchrotron's relatively inexpensive small magnet ring, of narrow bore. Although the development of FFAGs had not been pursued for over a decade starting from 1967, it has regained interest since the mid-1980s for usage in neutron spallation sources, as a driver for muon colliders and to accelerate muons in a neutrino factory since the mid-1990s. The revival in FFAG research has been particularly strong in Japan with the construction of several rings. This resurgence has been prompted in part by advances in RF cavities and in magnet design.
  • 1.4K
  • 01 Nov 2022
Topic Review
Ionic and Excited Species
Experimental and theoretical studies of either characterization and reactivity of ionic and excited species with atoms, molecules, and radicals of interest in the chemistry of plasmas and energy production. Single and ionized species with single or multiple charge (H+, He+, H3+, HCO+, H3O+, He22+, CO22+, etc.), excited atoms and molecules (e.g. O(1D), N(2D), H*(2s2S1/2), He*(21,3S0,1), N2*(A3Σu+), etc.) play a crucial role in various important chemical systems such as flames (i.e. chemi-ionizations), natural plasmas (i.e. planetary ionospheres, comet tails and interstellar clouds), and biological environments (e.g. damaged biological tissues via the interaction between ionizing radiation and living cells). Such processes are very interesting from a fundamental point of view in Physical Chemistry and attracted the attention of a wide scientific community, since many applications to important fields: radiation chemistry, plasma physics and chemistry, combustion processes, development of laser sources. In particular, the conversion of waste carbon dioxide via assisted plasma technology gained recently increasing interest due to the possibility of obtaining value-added products, like gaseous or liquid fuels. Such characteristics make this an encouraging strategy for the storage of electrical energy from renewable sources into chemical energy in a circular economy scheme.
  • 1.4K
  • 01 Nov 2020
  • Page
  • of
  • 118
Video Production Service