Topic Review
Sustainable Machining of Steels
To improve occupational health and safety and the reduction of product costs, companies are moving towards sustainable manufacturing. Emphasizes the sustainable machining aspects of steel by employing techniques that require the minimal use of cutting oils, i.e., minimum quantity lubrication, and other efficient techniques like cryogenic cooling, dry cutting, solid lubricants, air/vapor/gas cooling, and cryogenic treatment. Cryogenic treatment on tools and the use of vegetable oils or biodegradable oils instead of mineral oils are used as primary techniques to enhance the overall part quality, which leads to longer tool life with no negative impacts on the environment. 
  • 293
  • 28 Sep 2021
Topic Review
Materials for Agricultural Gas Sensors
A sensing material employed as a gas sensor will react with multiple gases, and for this reason, multiple sensing materials are employed in a network of gas sensors known as an electronic nose (eNose) system. By recording the response of this network of gas sensors, a signature which relates to the target analyte is detected, mitigating the issue of selectivity. 
  • 289
  • 21 May 2021
Topic Review
Metal (Mo, W, Ti) Carbides for Dry Reforming
Dry reforming of hydrocarbons (DRH) is a pro-environmental method for syngas production. It owes its pro-environmental character to the use of carbon dioxide, which is one of the main greenhouse gases. Transition metal carbides (TMCs) can potentially replace traditional nickel catalysts due to their stability and activity in DR processes. 
  • 286
  • 18 Jan 2022
Topic Review
Low-Dimensional Photocatalysts for CO2 Conversion
The ongoing energy crisis and global warming caused by the massive usage of fossil fuels and emission of CO2 into atmosphere continue to motivate researchers to investigate possible solutions. The conversion of CO2 into value-added solar fuels by photocatalysts has been suggested as an intriguing solution to simultaneously mitigate global warming and provide a source of energy in an environmentally friendly manner. There has been considerable effort for nearly four decades investigating the performance of CO2 conversion by photocatalysts, much of which has focused on structure or materials modification. In particular, the application of low-dimensional structures for photocatalysts is a promising pathway. Depending on the materials and fabrication methods, low-dimensional nanomaterials can be formed in zero dimensional structures such as quantum dots, one-dimensional structures such as nanowires, nanotubes, nanobelts, and nanorods, and two-dimensional structures such as nanosheets and thin films. These nanostructures increase the effective surface area and possess unique electrical and optical properties, including the quantum confinement effect in semiconductors or the localized surface plasmon resonance effect in noble metals at the nanoscale. 
  • 283
  • 29 Apr 2021
Topic Review
Semiconductor Materials for Photocatalytic Reduction of CO2
The photocatalytic reduction of CO2 is one of the most effective methods to control CO2 pollution. Therefore, the development of novel high-efficiency semiconductor materials has become an important research field. Semiconductor materials need to have a structure with abundant catalytic sites, among other conditions, which is of great significance for the practical application of highly active catalysts for CO2 reduction. The photocatalytic reduction of CO2 is a surface/interface reaction. It is important to find and use raw materials which are environmentally friendly and effective as catalysts.
  • 282
  • 27 May 2022
Topic Review
NiO-TiO2 p-n Heterojunction
NiO is a typical p-type semiconductor and it has widely been combined with TiO2 to form the p-n heterojunction due to its suitable energy band structure, high charge carrier concentration, high chemical stability and low cost. Decreasing the size of NiO to nanoclusters helps to improve the electron transfer channels on the surface of TiO2, thus enhance photocatalytic hydrogen production efficiency.
  • 282
  • 19 Apr 2022
Topic Review
Nanostructured Mg-Based Hydrogen Storage Systems
As the most abundant element in the world, hydrogen is a promising energy carrier and has received continuously growing attention in the last couple of decades. At the very moment, hydrogen fuel is imagined as the part of a sustainable and eco-friendly energy system, the “hydrogen grand challenge”. Among the large number of storage solutions, solid-state hydrogen storage is considered to be the safest and most efficient route for on-board applications via fuel cell devices. Notwithstanding the various advantages, storing hydrogen in a lightweight and compact form still presents a barrier towards the wide-spread commercialization of hydrogen technology. In this review paper we summarize the latest findings on solid-state storage solutions of different non-equilibrium systems which have been synthesized by mechanical routes based on severe plastic deformation. Among these deformation techniques, high-pressure torsion is proved to be a proficient method due to the extremely high applied shear strain that develops in bulk nanocrystalline and amorphous materials.
  • 281
  • 17 Jun 2021
Topic Review
Anti-Graffiti Treatments on Natural Stone Materials
Graffiti vandalism represents an aesthetic and structural phenomenon of degradation both for buildings and cultural heritage: the most used sprays and markers can permeate the stone materials exposing them to degradation. Hence, great attention is being currently devoted to new non-invasive chemical approaches to face this urgent problem. This work is aimed at deeply examining the effects of some of the most sustainable chemical protective methods on the physical properties of natural building materials (e.g., tuff and limestone) by testing two commercial antigraffiti products.
  • 273
  • 21 Jan 2022
Topic Review
Scanning Electrochemical Microscopy Applied to Metals and Coatings
Scanning electrochemical microscopy (SECM) is a scanning probe microscope (SPM) technique based on electrochemical principles that allows chemical imaging of materials with spatial resolution. The movement of a microelectrode (ME) in close proximity to the interface allows the application of various experimental procedures that can be classified into amperometric and potentiometric operations depending on either sensing faradaic currents or probe potential values due to concentration distributions resulting from the corrosion process, as sketched in. In addition, alternating current signals can be applied to the ME, leading to AC-operation modes.
  • 272
  • 23 May 2022
Topic Review
Shot Peening and Cavitation Peening
Shot peening is a dynamically developing surface treatment used to improve the surface properties modified by tool, impact, microblasting, or shot action.
  • 262
  • 08 Apr 2022
  • Page
  • of
  • 7
Top
Feedback